l1989年生,工学博士,副教授/博导 ,中南大学轨道列车转向架积雪结冰风洞实验室负责人l研究方向:轨道列车空气动力学、转向架积雪结冰、计算力学、光滑有限元法、流固耦合力学、并行计算,工业软件开发,深度学习等l电子邮箱:jiangchen2007 at hotmail.com l联系电话:13007485895 l学习经历:2007~2011年,湖南大学,工程力学,本科2011~2017年,湖南大学,力学,硕博连读2014~2016年,美国辛辛那提大学,航空工程,公派联合培养l工作经历:2019年—,中南大学交通运输工程学院,副教授 2017.7-2019.7 中南大学交通运输工程学院,博士后l科研项目:主持国家、省部级及重大校企合作科研课题9项国家自然科学基金面上项目-风致积雪中流-固-颗粒三相的S-FEM和SPH耦合模拟研究(53万,主持)湖南省自然科学基金面上项目-轨道车辆风雪两相流的S-FEM-DPM耦合模拟研究(5万,主持)国家重点研发计划(子课题)-基于底部流动控制的列车气动阻力优化 (30万,主持)国家自然科学基金青年项目-带接触强流固耦合的笛卡尔网格自适应浸没边界S-FEM研究(24万,主持)湖南省自然科学基金青年项目-基于光滑有限元法的车辆空气动力学数值模拟(5万,主持)中国博士后科学基金-高速列车流固耦合问题的光滑有限元算法研究(5万,主持)企业横向课题-碳陶制动盘流体动力学研究(38万,主持)企业横向课题-吸能装置精细化仿真及冲击试验(245万,主持)企业横向课题-160公里动力集中型动车组、符合TSI标准的双层动车组的防冰雪空气动力学仿真计算及防护方案设计(85万,主持)企业横向课题-动车组轴装制动盘流体动力学计算(20万,主持)l科研获奖:获省部级奖励3项高铁隧道气压爆波控制关键技术与应用,中国交通运输协会科技进步一等奖,2024 (排4)高铁隧道压力波系变截面缓解技术,中国铁道学会科学技术二等奖,2022 (排11)高速列车转向架区域积雪结冰防治技术,中国交通运输协会科技进步二等奖,2020 (排10)l学生竞赛:一种适用于高速列车转向架舱端板的高频振动除冰装置,全国大学生交通运输科技大赛二等奖,2023 一种适用于高速列车转向架舱端板的高频振动除冰装置,中国创新创业大赛轨道交通产业技术创新专业赛(团队组),三等奖,2023l学术成果:第一/通信作者发表SCI论文24篇,授权国家发明专利8项学术论文 38. 钟元木,曾雪莲,李景涛等.风沙环境下内燃机车内部沙相分布特性分析[J].南京理工大学学报,2024 37. 柳宁,李岩松,龙金兰等.高速列车流线型转向架与底部导流板的气动减阻效果研究[J].铁道科学与工程学报,2024,21(01):38-47. 36. 金星,洪晨,刘楠,施玉奇,王炳锟,姜琛*等.碳陶轴装制动盘泵风效应及对流散热性能数值仿真研究[J].武汉理工大学学报,2023,45(11):132-138. 35. 商雯斐,高广军,姜琛*.城际列车梳齿状涡流发生器气动减阻研究[J].铁道学报,2023,45(09):56-63.34. 姜琛,龙金兰,高广军等.高速列车底部导流板的气动减阻特性研究[J].湖南大学学报(自然科学版),2023,50(10):151-163. 33.Wang T, Zhou G, Jiang C, Shi F, Tian X, Gao G. A coupled cell-based smoothed finite element method and discrete phase model for incompressible laminar flow with dilute solid particles. Engineering Analysis with Boundary Elements 2022; 143:190–206. doi:10.1016/j.enganabound.2022.05.014. 32. Jiang C, Hong C, Wang T, Zhou G. N-Side Cell-Based Smoothed Finite Element Method for Incompressible Flow with Heat Transfer Problems. Engineering Analysis with Boundary Elements 2023; 146:749–766. doi:10.1016/j.enganabound.2022.11.025. 31. Liu M, Gao G, Khoo BC, He Z, Jiang C*. A cell-based smoothed finite element model for non-Newtonian blood flow. Applied Mathematics and Computation 2022; 435:127480. doi:10.1016/j.amc.2022.127480. 30. Su J, Zhou C, Jiang C*, Zheng M. The movement law and orientation control of rectangular particles in the viscous fluid domain based on IS-FEM. Advanced Powder Technology 2022; 33(7):103634. doi:10.1016/j.apt.2022.103634. 29. Zhang Y, Wang J, Jiang C, Zhang J, Wang T, Gao G. Investigation of ice and snow accumulations on the bogie areas of high-speed trains using ice wind tunnel experiments. Cold Regions Science and Technology 2022; 199:103560. doi:10.1016/j.coldregions.2022.103560.28. Wu S-W, Jiang C, Liu GR, Wan D-T, Jiang C. An n-sided polygonal selective smoothed finite element method for nearly incompressible visco-hyperelastic soft materials. Applied Mathematical Modelling 2022; 107:398–428. doi:10.1016/j.apm.2022.02.026.27. Wang T, Wang Y, Gao G, Zhao C, Jiang C*. Experimental investigations on the performance of anti-snow designs for urban rail train bogies. Journal of Wind Engineering and Industrial Aerodynamics 2022; 221:104913. doi:10.1016/j.jweia.2022.104913.26. Gao G, Zhang Y, Miao X, Wang J, Zhang J, Jiang C*. Influence of bogie fairing configurations on the snow accretion around bogie regions of a high-speed train under crosswind conditions. Mechanics Based Design of Structures and Machines 2021:1–18. doi:10.1080/15397734.2021.2003711.25. Zhang Y, Jiang C*, Zhan X. Modelling the multi-physics of wind-blown sand impacts on high-speed train. Wind and Structures 2021; 32(5):487–499. doi:10.12989/WAS.2021.32.5.487.24. Liu M, Gao G, Zhu H, Jiang C*, Liu GR. A cell-based smoothed finite element method (CS-FEM) for three-dimensional incompressible laminar flows using mixed wedge-hexahedral element. Engineering Analysis with Boundary Elements 2021 (Accepted, in-print)23. Liu M, Gao G, Jiang C*. A Cell-based Smoothed Finite Element Method for Incompressible Turbulent Flows. International Journal of Numerical Methods for Heat & Fluid Flow 2021. (Accepted, in-print)22. Liu M, Zhu H, Gao G, Jiang C*, Liu GR. A semi-implicit characteristic-based polynomial pressure projection for FEM to solve incompressible flows. International Journal of Numerical Methods for Heat & Fluid Flow 2021; ahead-of-print(ahead-of-print). doi:10.1108/HFF-04-2020-0184.21. Gao G, Chen Q, Jiang C*, Wang T, Liu M, Liu G. A stabilized finite element method based on characteristic‐based polynomial pressure projection scheme for incompressible flows. International Journal for Numerical Methods in Fluids 2021:fld.4963. doi:10.1002/fld.4963.20. Wu S-W, Jiang C, Jiang C*, Niu R-P, Wan D-T, Liu GR. A unified-implementation of smoothed finite element method (UI-SFEM) for simulating biomechanical responses of multi-materials orthodontics. Computational Mechanics 2021. doi:10.1007/s00466-020-01947-6.19. Liu M, Gao G, Zhu H, Jiang C*. A cell-based smoothed finite element method stabilized by implicit SUPG/SPGP/Fractional step method for incompressible flow. Engineering Analysis with Boundary Elements 2021; 124:194–210. doi:10.1016/j.enganabound.2020.12.018.18. Liu M, Gao G, Zhu H, Jiang C*, Liu G. A Cell-based Smoothed Finite Element Method for Arbitrary Polygonal Element to Solve Incompressible Laminar Flow. International Journal of Computational Methods 2020:S0219876221500171. doi:10.1142/S0219876221500171.17. Yan B, Wang S, Zhang G, Jiang C*, Xiao Q, Sun Z. A sharp-interface immersed smoothed point interpolation method with improved mass conservation for fluid-structure interaction problems. Journal of Hydrodynamics 2020; 32(2):267–285. doi:10.1007/s42241-020-0025-1.15. S.W. Wu, M. Li, C. Jiang, G.R. Liu, Solution Bounds and Nearly Exact Solutions for 3D Nonlinear Problems of Large Deformation of Solids Using S-Fem, International Journal of Computational Methods. 17 (2018) 1845007. https://doi.org/10.1142/S021987621845007X. (已录用, JCRQ4, 他引:1)14. Gao G, Chen Q, Zhang J, Zhang Y, Tian Z, Jiang C*. A Numerical Study on the Anti-Snow Performance of Deflectors on a High-Speed Train Bogie Frame. Journal of Applied Fluid Mechanics, 2020. doi:10.1007/s11517-019-02118-3.(已录用, JCRQ4, 他引:1)13. Huo SH, Jiang C*, Cui X, Liu GR. A high-fidelity 3D S-FEM stress analysis of a highly heterogeneous swine skull. Medical & Biological Engineering & Computing 2020, 58, 625-641. doi:10.1007/s11517-019-02118-3. (他引:1)12. Jiang, Chen, Zhi-Qian Zhang, Guang-Jun Gao, and G.R. Liu. “A Modified Immersed Smoothed FEM with Local Field Reconstruction for Fluid–Structure Interactions.” Engineering Analysis with Boundary Elements 107 (October 2019): 218–32. https://doi.org/10.1016/j.enganabound.2019.07.010. (他引:4)11. Jiang C, Zhang Z-Q, Han X, Liu G, Gao G-J, Lin T. A quasi-implicit characteristic-based penalty finite-element method for incompressible laminar viscous flows. International Journal for Numerical Methods in Engineering 2018; 114(2):147–171. doi:10.1002/nme.5738. (JCRQ1, 7分,他引:3)10. Jiang C, Yao J-Y, Zhang Z-Q, Gao G-J, Liu GR. A sharp-interface immersed smoothed finite element method for interactions between incompressible flows and large deformation solids. Computer Methods in Applied Mechanics and Engineering 2018; 340:24–53. doi:10.1016/j.cma.2018.04.032. (中科院Q1, 7分,他引:14)9. Chen Jiang, Zhi-Qian Zhang, Xu Han, Guirong Liu, Tao Lin. A cell-based smoothed finite element method with semi-implicit CBS procedures for incompressible laminar viscous flows. International Journal for Numerical Methods in Fluids 2018; 86(1):20–45. doi:10.1002/fld.4406.(JCR Q3 3分,他引21)8. Jiang C, Han X, Zhang Z-Q, Liu GR, Gao G-J. A Locking-Free Face-Based S-FEM via Averaging Nodal Pressure using 4-Nodes Tetrahedrons for 3D Explicit Dynamics and Quasi-statics. International Journal of Computational Methods 2017:1850043. doi:10.1142/S0219876218500433. (JCR Q3 3分,他引:4次)7. Jiang C, Han X, Liu GR, Zhang Z-Q, Yang G, Gao G-J. Smoothed finite element methods (S-FEMs) with polynomial pressure projection (P3) for incompressible solids. Engineering Analysis with Boundary Elements 2017; 84:253–269. doi:10.1016/j.enganabound.2017.07.022.(JCR Q2 5分,他引:4次)6. W. Zeng, G.R. Liu, C. Jiang, T. Nguyen-Thoi, Y. Jiang, A generalized beta finite element method with coupled smoothing techniques for solid mechanics, Engineering Analysis with Boundary Elements. 73 (2016) 103–119. https://doi.org/10.1016/j.enganabound.2016.09.008.5. Jiang C, Zhang Z-Q, Liu GR, Han X, Zeng W. An edge-based/node-based selective smoothed finite element method using tetrahedrons for cardiovascular tissues. Engineering Analysis with Boundary Elements 2015; 59:62–77. doi:10.1016/j.enganabound.2015.04.019. (JCR Q1, 7分,引用:31)4. Jiang C, Liu G-R, Han X, Zhang Z-Q, Zeng W. A smoothed finite element method for analysis of anisotropic large deformation of passive rabbit ventricles in diastole. International Journal for Numerical Methods in Biomedical Engineering 2015; 31(1):1–25. doi:10.1002/cnm.2697. (JCR Q1 7分,引用:25)3. Jiang C, Zhang Z-Q, Han X, Liu GR. re. Selective smoothed finite element methods for extremely large deformation of anisotropic incompressible bio-tissues. International Journal for Numerical Methods in Engineering 2014; 99(8):587–610. doi:10.1002/nme.4694. (中科院Q2, 7分,引用:22)2. 龙述尧, 姜琛. 中厚板理论的适用范围和精确程度的研究. 湖南大学学报(自然科学版).2012; 39(1): 37-41.1. 龙述尧, 姜琛, 郑娟. 三维弹性静力问题的无网格局部Petrov-Galerkin法. 湖南大学学报(自然科学版).2013; 40(12): 55-61.专利 10. 姜琛,商雯斐,高广军等. 一种城际列车用扰流装置[P]. 湖南省:CN113264070B,2023-09-29.9. 高广军,姜琛,张洁等. 一种高速列车用低阻力流线型转向架[P]. 湖南省:CN113815667B,2022-09-13.8. 高广军,张琰,姜琛,王田天,王家斌,王钰. 一种转向架积雪结冰风洞试验用的模拟车体[P]. 湖南省:CN113447231B, 2022.7. 高广军,张洁,姜琛,王田天,苗秀娟,张琰,王家斌. 一种轨道列车转向架积雪结冰风洞试验系统及试验方法[P]. 湖南省:CN113029610B,2022-05-27.6. 高广军,姜琛,王田天,张洁,张琰,王家斌. 一种转向架积雪结冰风洞试验系统的风雪分离装置[P]. 湖南省:CN112880965B,2022-05-17.5. 高广军,张洁,姜琛,王田天,苗秀娟,张琰,王家斌. 一种轨道列车转向架积雪结冰风洞试验系统及试验方法[P]. 湖南省:CN113029610B,2022-05-27.4. 高广军,张洁,姜琛,李锋. 一种双层风阻制动装置、双层司机室结构及高速列车[P]. 湖南省:CN111976754B,2021-11-02.3. 高广军,张洁,姜琛,李锋. 一种具有风阻制动装置的高速列车司机室及高速列车[P]. 湖南省:CN111976755B,2021-12-14.2. 高广军,关维元,王帅,姜琛,彭勇. 一种可重复使用的轨道车辆用碰撞吸能装置[P]. 湖南省:CN108860206B,2019-05-28.1. 高广军,王帅,姜琛,关维元,彭勇. 一种可重复使用的轨道车辆防碰撞用吸能结构[P]. 湖南省:CN109204368B,2019-07-02.l学术兼职:计算力学期刊IJNME审稿专家计算力学IJCM审稿专家海洋工程期刊Ocean Engineering审稿专家