特聘教授
博士生导师
硕士生导师
入职时间:2023-12-28
所在单位:数学与统计学院
学历:研究生(博士)毕业
办公地点:数学与统计学院455室
性别:男
学位:博士学位
在职信息:在职
毕业院校:华中科技大学
学科:数学
访问量:
最后更新时间:..
-
[1]Ze Li, Ming Wang, Observability inequalities at two time points from half-lines for linear KdV equations.SIAM J. Math. Anal. 57 (2025), No. 4, 4097-4136
-
[2]Hongjie Dong, Ming Wang, Log-type ultra-analyticity of elliptic equations with gradient terms.SIAM J. Math. Anal. 57 (2025), No. 4, 4609-4630
-
[3]Shanlin Huang, Gengsheng Wang, Ming Wang, Quantitative observability for the Schrodinger equation with an anharmonic oscillator.SCIENCE CHINA Mathematics (2025) Accepted
-
[4]Hanbing Liu, Lingying Ma, Ming Wang.Output feedback stabilizability of periodic sampled-data control systems.ESAIM, Control Optim. Calc. Var. 31(2025), Paper No. 11, 35 p.
-
[5]Ming Wang, Well posedness and global attractors for the 3D periodic BBM equation below the energy space.J. Dyn. Differ. Equations 36 (2024), No. 4, 3599-3621
-
[6]Ming Wang, Can Zhang, Analyticity and observability for fractional order parabolic equations in the whole space.ESAIM Control Optim. Calc. Var. 29 (2023), Paper No. 63, 22 pp.
-
[7]Ming Wang, Improved lower bounds of analytic radius for the Benjamin-Bona-Mahony equation.J. Geom. Anal. 33 (2023), no. 1, Paper No. 18, 25 pp.
-
[8]Ming Wang, Deqin Zhou, Exponential decay for the KdV equation on R with new localized dampings.Proc. Roy. Soc. Edinburgh Sect. A 153 (2023), no. 4, 1073–1098.
-
[9]Shanlin Huang, Gengsheng Wang, Ming Wang, Observable sets, potentials and Schrodinger equations.Comm. Math. Phys. 395 (2022), no. 3, 1297–1343.
-
[10]Ze Li, Ming Wang, Observability inequality at two time points for KdV equations.SIAM J. Math. Anal. 53 (2021), no. 2, 1944–1957.
-
[11]Shanlin Huang, Gengsheng Wang, Ming Wang, Characterizations of stabilizable sets for some parabolic equations in Rn.J. Differential Equations 272 (2021), 255–288.
-
[12]Ming Wang, Ze Li, Shanlin Huang, Unique continuation inequalities for nonlinear Schrodinger equations based on uncertainty principles.Indiana Univ. Math. J. 72 (2023), no. 1, 133–163.
-
[13]Gengsheng Wang, Ming Wang, Yubiao Zhang.Observability and unique continuation inequalities for the Schrodinger equation.J. Eur. Math. Soc. (JEMS) 21 (2019), no. 11, 3513–3572.
-
[14]Jianhua Huang, Ming Wang, New lower bounds on the radius of spatial analyticity for the KdV equation.J. Differential Equations 266 (2019), no. 9, 5278–5317.
-
[15]Shanlin Huang, Ming Wang, Quan Zheng, Zhiwen Duan, Lp estimates for fractional Schrodinger operators with Kato class potentials.J. Differential Equations 265 (2018), no. 9, 4181–4212.
-
[16]Gengsheng Wang, Ming Wang, Can Zhang, Yubiao Zhang.Observable set, observability, interpolation inequality and spectral inequality for the heat equation in Rn.J. Math. Pures Appl. (9) 126 (2019), 144–194.
-
[17]Ming Wang, Nondecreasing analytic radius for the KdV equation with a weakly damping.Nonlinear Anal. 215 (2022), Paper No. 112653, 16 pp.
-
[18]Ming Wang, Zhiming Liu, Jianhua Huang, Regular attractor of the β-evolution equation with fractional damping on Rn.J. Math. Phys. 63 (2022), no. 2, Paper No. 022701, 17 pp.
-
[19]Ke Liu, Ming Wang, Fixed analytic radius lower bound for the dissipative KdV equation on the real line.NoDEA Nonlinear Differential Equations Appl. 29 (2022), no. 5, No. 57, 21 pp.
-
[20]Ming Wang, Can Zhang, Liang Zhang, Observability on lattice points for heat equations and applications.Systems Control Lett. 134 (2019), 104564, 7 pp.