Language :
English
中文
Yufeng Xu
Home
Journal Publications
Research Projects
Books
Patents
Teaching
Honors and Awards
MOBILE Version
Journal Publications
Current position:
Home
>
Journal Publications
[1]Lei Liu, Yufeng Xu, Numerical solutions of one-dimensional Gelfand equation with fractional Laplacian[J].Journal of Mathematical Chemistry, 2024: 1-15.
[2]S. Kumar, R.K. Pandey, K. Kumar, Yufeng Xu.Legendre collocation method for new generalized fractional advection-diffusion equation[J].International Journal of Computer Mathematics, 2024: 1-23.
[3]Kejia Pan, Y. Xu, Xiaoxin Wu.Biquadratic element discrete duality finite volume method for solving elliptic equations on quadrilateral mesh[J].Journal of Computational Physics, 2024, 503 (2024) : 1-16.
[4]Y. Xu, Zhoushun Zheng, Pintao Zhao, Zhijian Ye.Conservative second-order finite difference method for Camassa–Holm equation with periodic boundary condition[J].International Journal of Computer Mathematics, 2023: 1-19.
[5]Ruixue Sun, Y. Xu, Numerical solutions of Gelfand equation in steady combustion process[J].Applied Mathematics and Computation, 2022, 441: 1-12.
[6]Wen Cao, Y. Xu.Collocation method for optimal control of a fractional distributed system[J].Fractal and Fractional, 2022, 6 (594) : 1-13.
[7]Kejia Pan; Xiao-xin Wu; Yufeng Xu; Guangwei Yuan.An exact-interface-fitted mesh generator and linearity-preserving finite volume scheme for anisotropic elliptic interface problems[J].Journal of Computational Physics, 2022, 463 (2022) : 1-25.
[8]Taibai Fu, Changfa Du, Y. Xu, An effective finite element method with shifted fractional powers bases for fractional boundary value problems[J].Journal of Scientific Computing, 2022, 4 (92) : 1-15.
[9]Yang Hongbin, Xu Yufeng, Xu Yufeng, Numerical solution for a semilinear parabolic blowup-combustion model.数学理论与应用, 2020, 40 (3) : 40-53.
[10]K.J. Pan, Hai-Wei Sun, Yuan Xu, Y. Xu.An efficient multigrid solver for two-dimensional spatial fractional diffusion equations with variable coefficients[J].Applied Mathematics and Computation, 2020, 402: 1-15.
[11]Z.B. Wang, Y. Xu, Quenching of combustion explosion model with balanced space-fractional derivative[J].Mathematical Methods in the Applied Sciences, 2020, 43 (7) : 4472-4485.
[12]Desong Kong, Y. Xu, Zhoushun Zheng.Numerical method for generalized time fractional KdV‐type equation[J].Numerical Methods for PDEs, 2019, 36 (4) : 906-936.
[13]Qinwu Xu, Y. Xu, Quenching study of two-dimensional fractional reaction-diffusion equation from combustion process[J].Computers and Mathematics with Applications, 2019, 78 (5) : 1490-1506.
[14]Desong Kong, Y. Xu, Zhoushun Zheng.A hybrid numerical method for the KdV equation by finite difference and sinc collocation method[J].Applied Mathematics and Computation, 2019, 355: 61-72.
[15]K. Kumar, R.K. Pandey, S. Sharma, Y. Xu.Numerical scheme with convergence for a generalized time-fractional Telegraph-type equation[J].Numerical Methods for PDEs, 2019, 35 (3) : 1164-1183.
[16]Y. Xu, Z. Wang.Quenching phenomenon of a time-fractional Kawarada equation[J].Journal of Computational and Nonlinear Dynamics, 2018, 13: 101010-1.
[17]Q. Xu, Y. Xu, Extremely low order time-fractional differential equation and application in combustion process[J].Commun Nonlinear Science Numerical Simulat, 2018 (64) : 135-148.
[18]Y. Xu, H.W. Sun, Q. Sheng.On variational properties of balanced central fractional derivatives[J].International Journal of Computer Mathematics, 2018, (6-7) (95) : 1195-1209.
[19]Y. Xu.Quenching phenomenon in a fractional diffusion equation and its numerical simulation[J].International Journal of Computer Mathematics, 2017, 1 (95) : 98-113.
[20]Y. Xu, Z. Zheng.Quenching phenomenon of a time-fractional diffusion equation with singular source term[J].Mathematical Methods in the Applied Sciences, 2017, 16 (40) : 5750-5759.
total36 1/2
first
previous
next
last
Page