曹东升

教授 博士生导师 硕士生导师

所在单位:湘雅药学院

职务:院长

办公地点:长沙市岳麓区桐梓坡路172号湘雅医学院后栋449

联系方式:oriental-cds@163.com

主要任职:人工智能药学交叉研究中心主任

学科:药学
化学
计算机科学与技术

学术荣誉:

2012  当选:  学术新人奖

曾获荣誉:

2023年中国高被引学者

国家万人计划青年拔尖人才

2022-03-29  当选:  2022年全球顶尖前10万名科学家排名

2022-09-08  当选:  国家自科基金创新研究群体核心成员

2021-08-31  当选:  2021年全球顶尖前10万名科学家排名

2021-04-29  当选:  2021全球前2%顶尖科学家

2021-12-15  当选:  国家重点研发计划首席科学家(青年科学家)

2021-09-06  当选:  湖南省科技创新领军人才

2021-06-01  当选:  湖南省杰出青年

2015-05-01  当选:  湖南省湖湘青年英才

2014-05-08  当选:  中国香江学者计划

2015-05-13  当选:  湖南省优秀博士论文

2015-07-15  当选:  CAC会议杰出青年科学家

研究方向

当前位置: 中文主页 >>研究方向

基于人工智能技术和分子模拟的药物选择性/脱靶效应/耐药机制研究


   基于机器学习的大标度药物靶标识别预测研究

药物-靶标关系及分子靶标的预测对于早期候选分子成药性及安全性评价、天然产物靶标发现及结构优化、药物新机制发现等研究具有重大意义。药物-靶标相互作用本质上是分子识别的过程,涉及多种影响因素以及多种因素间的相互作用。针对药物-靶标关系预测的难点问题,我们课题组将药物-靶标关系预测问题转化为基于化学大数据的关系型数据建模问题,从多数据融合角度出发,整合来自多维度化学空间、生物空间以及相互作用空间的信息,发展了多数据融合的AI算法对分子识别进行研究。目前本课题组基于多尺度融合思想,通过整合多层面多水平的药物和蛋白靶标信息提出基于协同过滤推荐系统实现药物-副作用/靶标关系预测的多尺度系统药理学模型,并用于大规模药物靶标和副作用的预测,模型预测精度达到91%以上,并成功发现了抗癌新药伊沙匹隆耐药的新机制,体内实验证实自噬抑制剂氯喹和伊沙匹隆合用可增强伊沙匹隆治疗乳腺癌的敏感性。 基于化学基因组学思想,通过整合化学分子结构特征、蛋白质序列特征及相互作用网络特征发展了基于多任务集成学习的大标度分子靶标预测新方法和在线预测平台TargetNet 这些算法应用到雷帕霉素、土贝母皂苷及卷柏属化学成分的靶标识别研究,分别成功鉴定了雷帕霉素的耐药新机制、土贝母皂苷的抗乳腺癌靶标以及卷柏属化学成分抗阿尔兹海默症的分子靶标,并在细胞及动物实验水平上获得验证。我们课题组将继续利用多任务学习,自监督学习,深度学习等各种新型AI技术构建高效率高精度的大标度靶标预测模型。


5.png


     基于人工智能和知识图谱的药物-靶标/药物/副作用/疾病关系预测研究


dr.png



     大标度分子动力学模拟的药物-靶标识别相互作用机制研究

传统实验方法(X-rayNMR)可以有效地表征蛋白或蛋白-配体的静态或准静态结构,但是无法描述配体靶标识别过程中的完整动力学过程。在这种情况下,全原子模拟(包括常规动力学模拟和加强采样动力学模拟)可以辅助实验技术捕捉原子层次的动力学和热力学作用机制,从而解释药物的选择性和耐药性等机制问题。我们采用常规动力学模拟和加强采样动力学模拟技术(如亚动力学、伞形采样、适配性偏向力等方法)揭示了许多复杂的分子机制,开展了药物分子耐药性机制、ABC转运蛋白作用机制、小分子保留时间计算等方面的理论分析。