中文

Proof of Artes-Llibre-Valls's conjectures for the Higgins-Selkov and the Selkov systems

Hits:

  • Release time:2019-07-11

  • Journal:JOURNAL OF DIFFERENTIAL EQUATIONS

  • Place of Publication:ACADEMIC PRESS INC ELSEVIER SCIENCE, 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA

  • Key Words:Limit cycle; Higgins-Selkov system; Selkov system; Lienard system

  • Abstract:The aim of this paper is to prove Artes-Llibre-Valls's conjectures on the uniqueness of limit cycles for the Higgins-Selkov system and the Selkov system. In order to apply the limit cycle theory for Lienard systems, we change the Higgins-Selkov and the Selkov systems into Lienard systems first. Then, we present two theorems on the nonexistence of limit cycles of Lienard systems. At last, the conjectures can be proven by these theorems and some techniques applied for Lienard systems.

  • First Author:Chen Hebai

  • Indexed by:Unit Twenty Basic Research

  • Correspondence Author:Tang Yilei

  • Document Code:10.1016/j.jde.2018.12.011

  • Discipline:数学

  • Document Type:J

  • Volume:266

  • Issue:11

  • Page Number:7638-7657

  • ISSN No.:0022-0396

  • Translation or Not:no

  • Date of Publication:2019-05-19


  • Mobile:

  • Email:

Central South University  All rights reserved  湘ICP备05005659号-1 Click:
  MOBILE Version

The Last Update Time:..