Global dynamics of a Wilson polynomial Lienard equation
Hits:
Release time:2020-02-21
Journal:Proccedings of the American Mathematical Society
Abstract:Gasull and Sabatini in [Ann. Mat. Pura Appl., 2019] studied limit cycles of a Li enard system which has a xed invariant curve, i.e., a Wilson polynomial Li enard system. The Li enard system can be changed into $\dot x=y-(x^2-1)(x^3-bx), ~ \dot y=-x(1+y(x^3-bx))$. For $b\leq0.7 limit cycles of the system are studied completely. But, for 0.7 < b < 0.76, the exact number of limit cycles is still unknown, and Gasull and Sabatini conjectured that the exact number of limit cycles is two(including multiplicities). In this paper, we give a positive answer of this conjecture and study all bifurcatio
First Author:Chen Haibo
Indexed by:Journal paper
Correspondence Author:Chen Hebai*
Discipline:数学
Document Type:J
Volume:148
Issue:11
Page Number:4769-4780
Translation or Not:no
Included Journals:SCI
-
|
Mobile:c5336669d3965a448c03a5314e1543e9bcf049eac5a0684721d265d9a4fd56dd450f3d92d8afb856ebe14470732eaca5499f3c795d4a746431565ff8a4d7c271652480d189013f6257462b0dd7a04caaa9d9efd0f5563df7deb5745020b89fb3316e6885371fa15ce492c88a0798075b04ef90d13b963161a4361cff99d4eda6
Email:79aa0cd77ee94f07e146e8ff7fff4576fbe75b42e7394249549e646d5ea8c0c4e16d398d16ab4ad2d8dc482e9ca547f7e1465828c6099955e8956abe594fa9ea82ee050487bfd9ead6b3e6b3e1f23e90f0a95ba310bb6030ec274c7fbe5d1c69f81154ed38dac6d8103ce9d301680f429f9e9789e70febd62d7337bfe3c5ecc4
|