个人简介
代国章,男,副教授,硕士生导师,博士(后),中南大学“531”人才, 物理系书记兼系实验室主任,美国佐治亚理工学院访问学者。
现任湖南省光学学会理事,光电材料器件网专家组委员,中国材料研究学会会员。主要从事半导体物理、新型光电子材料和器件、纳米发电机等方面的教学与研究;在Nat. Comm., J. Am. Chem. Soc., Adv. Mater., Adv. Energy Mater.、ACS Energy Lett., Adv. Funct. Mater, Nano Energy, ACS Nano, Small 等国际知名刊物上发表SCI论文70余篇(第一/通讯作者论文40余篇),论文累计被引用3000余次;担任Adv. Funct. Mater, Nano Energy, Nanoscale等杂志审稿人。参与编著书的一个专章,被邀多次参加国际/内会议;曾主持国家自然科学基金,湖南省自然科学基金和中国博士后科学基金,参加多项国家自然科学基金。
本人为中南大学物理学院“柔性印刷电子”研究团队骨干成员。课题组由国家“万人计划”青年拔尖人才阳军亮教授领衔。课题组网页:https://www.x-mol.com/groups/CSU-FPE
Email: gzdai2011@csu.edu.cn;QQ:52991499; Tel: +86-13786187882;办公室:新校区物理楼419
热忱欢迎物理、光电、电子、材料等专业研究生、本科生加入 !!!
一、教育教学
讲授《半导体物理与器件》研究生课程和《半导体物理学》、《大学物理》、《近代物理实验》、《大学物理实验》等本科生课程;指导或协助指导博士研究生1人,硕士生15人(毕业7人);指导本科生自由探索实验项目2项(均获得国家级立项),实验室开放项目多项。指导本科生毕业设计、课程设计和生产实习多届。
二、主要科研项目
[1]. 全无机钙钛矿高性能光电探测器及其压电光电子学效应,2020-2022,湖南省自然科学基金,主持
[2]. 一维II-VI族半导体异质节纳米结构的合成与光子学性质(13JJ3005),201301-201512,湖南省自然科学基金,主持
[3]. 具有周期发光的II-VI族半导体超晶格纳米线的制备与光学性质(51002009),201101-201312,国家自然科学基金,主持
[4]. 具有周期发光结构的CdS超晶格纳米线的制备与光学性质(2010047021),201006-201106,中国博士后科学基金,主持
[5]. 半导体基核壳纳米线的制备与光电性能研究,2014-2016,超微结构与超快过程湖南省重点实验室开放基金项目,主持
[6]. 一维II-VI族半导体异质节纳米结构的气相合成与光电子学性质研究,201109-,中南大学科研启动基金,主持
[7]. 新型二维层状材料谷电子学与器件的研究 (61775241),201801-202112,国家自然科学基金,参与(排名第2)
[8]. 异质维纳超材料结构的优化设计及Fano共振和等离子诱导透明特性的机理研究(61275174),201301-201612,国家自然科学基金,参与(排名第2)
[9]. 可用于荧光太阳能聚光器的聚合物/无机纳米晶杂化材料的制备及应用研究(51003005),201101-201312,国家自然科学基金,参与(排名第2)
[10]. CdS和ZnO纳米线中激子-声子、激子-激子相互作用理论(11004009),201101-201312,国家自然科学基金,参与(排名第2)
三、代表性论文
(1) 主要第一/通讯作者论文
[1]. Space Volume Effect in Tube Liquid-Solid Triboelectric Nanogenerator for Output Performance Enhancement. ACS Energy Letter, 2024, DOI: 10.1021/acsenergylett.4c00072.
[2]. IC-compatible High-efficiency Power Management for Triboelectric Nanogenerators Based on the Concept of Limit. IEEE Transactions on Power Electronic, 2024, 39(1), 6.
[3]. Coupling charge pump and BUCK circuits to efficiently enhance the output performance of triboelectric nanogenerator. Nano Energy, 2023, 115, 108749.
[4]. 2D Ruddlesden–Popper Polycrystalline Perovskite Pyro-Phototronic Photodetectors. Small, 2023, 2207185.
[5]. A Robust Droplet Triboelectric Nanogenerator with Self-Cleaning Ability Achieved by Femtosecond Laser. Acs Appl. Mater. Interfaces, 2023, 15, 30902.
[6]. A Rolling-Mode Al/CsPbBr3 Schottky Junction Direct-Current Triboelectric Nanogenerator for Harvesting Mechanical and Solar Energy. Adv. Energy Mater., 2022, 12, 2200550.
[7]. High-Performance CdS@CsPbBr3 Core-Shell Microwire Heterostructure Photodetector. J. Phys. D: Appl. Phys., 2022, 55, 194002.
[8]. Three-dimensional pyramidal CsPbBr3/C8BTBT film heterojunction photodetectors with high responsivity and long-term stability. Org. Electron. 2022, 101, 106409.
[9]. Progress on growth of metal halide perovskites by vapor-phase synthesis and their applications. J. Phys. D: Appl. Phys., 2021, 55, 073001.
[10]. High-Performance and Long-Term Air-Stable CH3NH3PbI3/C8BTBT Heterojunction Photodetector Fabricated via Chemical Vapor Deposition. Phys. Status Solidi RRL, 2021, 15, 2000479.
[11]. High-performance and Flexible CsPbBr3UV-vis Photodetectors Fabricated via Chemical Vapor Deposition. J. Phys. D: Appl. Phys., 2020, 53,354002.
[12]. Single Bi2S3/Bi2S3-xOx Nanowire Photodetector with Broadband Response from Ultraviolet to Near-infrared Range. Physica E, 2020, 120, 114041
[13]. Large-scale Roll-to-Roll Micro-gravure Printed Flexible PBDB-T:IT-M Bulk Heterojunction Photodetectors. Appl. Phys. A, 2020, 126, 442.
[14]. Solar-blind SnO2 nanowire photo-synapses for associative learning and coincidence detection. Nano Energy, 2019, 62,393.
[15]. All-inorganic perovskite CsPbBr3 microstructures growth via chemical vapor deposition for high-performance photodetectors. Nanoscale, 2019, 11, 21386.
[16]. High-performance solar-blind SnO2 nanowire photodetectors assembled using optical tweezers. Nanoscale, 2019, 11, 2162.
[17]. Broadband Photodetectors Based on Topological insulator Bi2Se3 nanowire with enhanced Performance by strain modulation effect. Physica E., 2019. 114,113620.
[18]. Piezo-phototronic Enhanced Photoresponsivity Based on Single CdTe Nanowire Photodetector. J. Appl. Phys. 2019, 125, 094505.
[19]. Piezo-phototronic Effect Enhanced Responsivity of Photon Sensor Based on Composition-Tunable Ternary CdSxSe1−x Nanowires. ACS Photonics, 2017, 4, 2495.
[20]. High-performance and flexible photodetectors based on P3HT/ CdS/CdS:SnS2 superlattice nanowires hybrid films. Appl. Phys. A, 2017, 123,731.
[21]. High-performance photodetectors based on CVD-grown highquality SnS2 nanosheets. Appl. Phys. A, 2017, 123, 299.
[22]. Fabrication of GaInPSb quaternary alloy nanowires and its room temperature electrical properties. Appl. Phys. A, 2017, 123, 6.
[23]. Artificial synapses based on biopolymer electrolyte-coupled SnO2 nanowire transistors. J. Mater. Chem. C, 2016, 4,11110.
[24]. High-performance ultraviolet photodetectors based on CdS/CdS:SnS2 superlattice nanowires. Nanoscale, 2016, 8, 14580.
[25]. Fabrication and Micro-photoluminescence Property of CdSe/CdS Core/shell Nanowires. Appl. Phys. A, 2015, 119, 343.
[26]. Fabrication and optical waveguide of Sn-catalyzed CdSe microstructures. Solid State Communications, 2013,167, 31.
[27]. Color-tunable periodic spatial emission of alloyed CdS1-xSex/ Sn: CdS1-xSex superlattice microwires. Opt. Mater. Express, 2011, 1,1185.
[28]. Visible whispering-gallery modes in ZnO microwires with varied cross sections. J. Appl. Phys., 2011, 110, 033101.
[29]. Preparatio nand Periodic Emission of Superlattice CdS/CdS:SnS Microwires. J. Am. Chem. Soc., 2010, 132,12174.
[30]. Formation and Optical Properties of ZnO:ZnFe2O4 Superlattice Microwires. Nano Res., 2010, 3, 326.
[31]. Simple Synthesis and Growth Mechanism of core-shell cdse-siox nanowires, Journal of nanomaterials. 2010, Article ID 427689, doi: 10.1155/2010/427689.
[32]. Sn-catalyst growth and optical waveguide of ultralong CdS nanowires. Chem. Phys. Lett., 2010, 4597, 85.
(2)主要合作论文
[1]. The effect of air exposure on device performance of flexible C8-BTBT organic thin-film transistors with hygroscopic insulators, Science China-Materials, 2020, 63, 2551.
[2]. Alternating Current Photovoltaic Effect. Adv. Mater., 2020, 1907249.
[3]. Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nature Comm., 2020,11, 2093.
[4]. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res., 2020, 13, 919.
[5]. Dramatically Enhanced Broadband Photodetection by Dual Inversion Layers and Fowler-Nordheim Tunneling. ACS Nano, 2019,13, 2289.
[6]. Quantifying the triboelectric series. Nature Comm., 2019, 10, 1427.
[7]. An Ultra-Low-Friction Triboelectric-Electromagnetic Hybrid Nanogenerator for Rotation Energy Harvesting and Self-Powered Wind Speed Sensor. ACS Nano, 2018, 12, 9433.
[8]. Complementary Electromagnetic-Triboelectric Active Sensor for Detecting Multiple Mechanical Triggering. Adv. Funct. Mater, 2018, 1, 1705808.
四、主要研究方向
(1)摩擦纳米发电机构建与应用(能量采集,电源管理,自驱动传感,等)
(2)新型光电探测器设计与制备(压电,热释电,负光电导,等)
(3)半导体微结构调控生长与器件物理(钙钛矿,异质结,低维,等)