X. Deng, H. Tang, X. Pei, D. Li and K. Xue, "MDHE: A Malware Detection System Based on Trust Hybrid User-Edge Evaluation in IoT Network," in IEEE Transactions on Information Forensics and Security, vol. 18, pp. 5950-5963, 2023, doi: 10.1109/TIFS.2023.3318947. (CCF A类)
发布时间:2024-03-13
点击次数:
发表刊物:IEEE Transactions on Information Forensics and Security
摘要:Abstract— With the coming of the Internet of Things (IoT) era, malware attacks targeting IoT networks have posed serious threats to users. Recently, the emerging of edge computing have paved the way for new data processing paradigms in IoT networks, but it is still a challenge for deploying malware detection systems on the IoT devices. This paper develops an IoT malware detection system based on trust hybrid user-edge evaluation, namely MDHE. This system decomposes a large and complex deep learning model into two parts, which are deployed on edge servers and end devices, respectively. Specifically, a trust evaluation mechanism is used to select the trusted devices to participate the model training. Moreover, we develop a private feature generation that leverages a graph mining technology to extract the subgraph features, which then are perturbed by leveraging the differential privacy technology to prevent user privacy from leaking. Finally, we reconstruct the perturbed features on edge server, and propose a Capsule Network (CapsNet) to identify malware. Experimental results show that MDHE can effectively detect malware. Specifically, it can reduce sensitive inference while maintaining the utility of data.
备注:http://faculty.csu.edu.cn/dengxiaoheng/zh_CN/lwcg/10445/content/49306.htm
是否译文:否
附件:
3-MDHE_A_Malware_Detection_System_Based_on_Trust_Hybrid_User-Edge_Evaluation_in_IoT_Network.pdf
上一条: X. Pei, X. Deng, S. Tian, J. Liu and K. Xue, "Privacy-Enhanced Graph Neural Network for Decentralized Local Graphs," in IEEE Transactions on Information Forensics and Security, vol. 19, pp. 1614-1629, 2024, doi: 10.1109/TIFS.2023.3329971. (CCF A类)
下一条: P. Jiang, X. Deng, S. Wan, H. Qi and S. Zhang, "Confidence-Enhanced Mutual Knowledge for Uncertain Segmentation," in IEEE Transactions on Intelligent Transportation Systems, doi: 10.1109/TITS.2023.3309600. (中科院1区)