邓晓衡

教授 博士生导师 硕士生导师

入职时间:2006-01-05

所在单位:电子信息学院

职务:院长

学历:博士研究生毕业

性别:男

联系方式:Email:dxh@csu.edu.cn

学位:博士学位

在职信息:在职

主要任职:湖南省数据传感与交换设备工程中心 主任 IEEE RS Chapter长沙 主席CCF普适计算专委 委员 CCF长沙 执委

毕业院校:中南大学

学科:信息与通信工程
计算机科学与技术

当前位置: 邓晓衡 >> 论文成果

X. Pei, X. Deng, S. Tian, J. Liu and K. Xue, "Privacy-Enhanced Graph Neural Network for Decentralized Local Graphs," in IEEE Transactions on Information Forensics and Security, vol. 19, pp. 1614-1629, 2024, doi: 10.1109/TIFS.2023.3329971. (CCF A类)

发布时间:2024-03-13

点击次数:

发表刊物:IEEE Transactions on Information Forensics and Security

摘要:Abstract: With the ever-growing interest in modeling complex graph structures, graph neural networks (GNN) provide a generalized form of exploiting non-Euclidean space data. However, the global graph may be distributed across multiple data centers, which makes conventional graph-based models incapable of modeling a complete graph structure. This also brings an unprecedented challenge to user privacy protection in distributed graph learning. Due to privacy requirements of legal policies, existing graph-based solutions are difficult to deploy in practice. In this paper, we propose a privacy-preserving graph neural network based on local graph augmentation, named LGA-PGNN, which preserves user privacy by enforcing local differential privacy (LDP) noise into the decentralized local graphs held by different data holders. Moreover, we perform local neighborhood augmentation on low-degree vertices to enhance the expressiveness of the learned model. Specifically, we propose two graph privacy attacks, namely attribute inference attack and link stealing attack, which aim at compromising user privacy. The experimental results demonstrate that LGA-PGNN can effectively mitigate these two attacks and provably avoid potential privacy leakage while ensuring the utility of the learning model.

备注:http://faculty.csu.edu.cn/dengxiaoheng/zh_CN/lwcg/10445/content/49307.htm

是否译文:

附件:

  • 2-Privacy-Enhanced_Graph_Neural_Network_for_Decentralized_Local_Graphs.pdf

  • 上一条: Zijian Liu, Xiaoheng Deng, Ping Jiang, Conghao Lv, et al. Edge Perception Camouflaged Object Detection under Frequency Domain Reconstruction[J]. IEEE Transactions on Circuits and Systems for Video Technology,,DOI: 10.1109/TCSVT.2024.3404005 , 2024

    下一条: X. Deng, H. Tang, X. Pei, D. Li and K. Xue, "MDHE: A Malware Detection System Based on Trust Hybrid User-Edge Evaluation in IoT Network," in IEEE Transactions on Information Forensics and Security, vol. 18, pp. 5950-5963, 2023, doi: 10.1109/TIFS.2023.3318947. (CCF A类)