黄合来

教授 博士生导师

职务:院长

联系方式:huanghelai@csu.edu.cn https://orcid.org/0000-0003-2334-4124

学位:博士学位

主要任职:交通运输工程学院 院长、二级教授、智慧交通湖南省重点实验室 主任

其他任职:Acci Anal Prev 主编

毕业院校:新加坡国立大学

学科:交通运输工程

曾获荣誉:

万人计划国家科技创新领军人才

Clarivate全球高被引科学家

斯坦福大学发布全球前2%顶尖科学家

中国智能交通优秀科技创新人才奖

湖南省科技创新领军人才

湖南省121人才工程(第二层级)

湖南省杰出青年基金获得者

“湖湘青年“创新创业平台支持计划

霍英东青年教师基金获得者

中国电信优秀教师奖

本科教学质量优秀奖

当前位置: 中文主页 >> 论文成果

Modeling nonlinear relationship between crash frequency by severity and contributing factors by neural networks

发布时间:2016-04-27

点击次数:

发表刊物:Analytic Methods in Accident Research

摘要:This study develops neural network models to explore the nonlinear relationship between crash frequency by severity and risk factors. To eliminate the possibility of over-fitting and to deal with black-box characteristic, a network structure optimization and a rule extraction method are proposed. A case study compares the performance of the modified neural network models with that of the traditional multivariate Poisson-lognormal model for predicting crash frequency by severity on road segments in Hong Kong. The results indicate that the trained and optimized neural networks have better...

备注:.

合写作者:Wong S.C. (2016), Pei X., Huang H.*, Zeng Q.

是否译文:

附件:

  • 41.pdf

  • 上一条: Predicting crash frequency using an optimized radial basis function neural network model

    下一条: A vehicle type-dependent visual imaging model for analyzing the heterogeneous car-following dynamics