黄合来

教授 博士生导师

职务:院长

联系方式:huanghelai@csu.edu.cn https://orcid.org/0000-0003-2334-4124

学位:博士学位

主要任职:交通运输工程学院 院长、二级教授、智慧交通湖南省重点实验室 主任

其他任职:Acci Anal Prev 主编

毕业院校:新加坡国立大学

学科:交通运输工程

曾获荣誉:

万人计划国家科技创新领军人才

Clarivate全球高被引科学家

斯坦福大学发布全球前2%顶尖科学家

中国智能交通优秀科技创新人才奖

湖南省科技创新领军人才

湖南省121人才工程(第二层级)

湖南省杰出青年基金获得者

“湖湘青年“创新创业平台支持计划

霍英东青年教师基金获得者

中国电信优秀教师奖

本科教学质量优秀奖

当前位置: 中文主页 >> 论文成果

Macro and micro models for zonal crash prediction with application in hot zones identification

发布时间:2016-07-13

点击次数:

发表刊物:Journal of Transport Geography

摘要:Zonal crash prediction has been one of the most prevalent topics in recent traffic safety research. Typically, zonal safety level is evaluated by relating aggregated crash statistics at a certain spatial scale to various macroscopic factors. Another potential solution is from the micro level perspective, in which zonal crash frequency is estimated by summing up the expected crashes of all the road entities located within the zones of interest. This study intended to compare these two types of zonal crash prediction models. The macro-level Bayesian spatial model with conditional autoregressive

合写作者:Abdel-Aty M. (2016), Lee J., Zeng Q.*, Xu P., Song B., Huang H.

期号:54

页面范围:248-256

是否译文:

附件:

  • 45.pdf

  • 上一条: Support vector machine in crash prediction at the level of traffic analysis zones: assessing the spatial proximity effects

    下一条: Crash protectiveness to occupant injury and vehicle damage: an investigation on major car brands