Language :
English
中文
李赛毅
Home
Journal Publications
Research Projects
Books
Patents
Teaching
Honors and Awards
Recommended Ph.D.Supervisor
Recommended MA Supervisor
MOBILE Version
Journal Publications
Current position:
Home
>
Journal Publications
[1]李海勇, 李赛毅, 纯Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J].金属学报, 2022, 58: 250.
[2]李美霖, 李赛毅, 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J].金属学报, 2020, 56: 795.
[3]贾亚娟, 李赛毅, 基于最大应变速率失稳准则预测铝合金板成形极限曲线[J].中国有色金属学报, 2019, 29: 1143.
[4]S. Li, L. Yang, C. Lai.Atomistic simulations of energies for arbitrary grain boundaries. Part I: Model and validation[J].Comput. Mater. Sci., 2019, 161: 330.
[5]L. Yang, S. Li, C. Lai.Atomistic simulations of energies for arbitrary grain boundaries. Part II: Statistical analysis of energies for tilt and twist grain boundaries[J].Comput. Mater. Sci., 2019, 162: 268.
[6]S. Li, L. Yang, N. Qin.Development of through-thickness texture gradient and persistence of shear-type textures during annealing of commercial purity aluminium sheet processed by accumulative roll-bonding[J].J. Mater. Sci. Technol., 2018, 34: 821.
[7]X. Zhang, X. Li, J. Liu, S. Li, J. Yang.Finite element analysis of bending behavior and strain heterogeneityin snake rolling of AA7050 plates using a hyperbolic sine-typeconstitutive law[J].J. Mater. Process. Technol., 2017, 240: 274.
[8]X. Zhang, J. Liu, N. Qin, S. Li.Microstructure, texture andmechanical properties of AA1060 aluminum plate processed by snake rolling[J].Mater. Design, 2016, 90: 1017.
[9]S. Li, L. Yang.A modified synthetic driving force method for molecular dynamics simulation of grain boundary migration[J].Acta Mater., 2015, 100: 107.
[10]M. Zhang, X. Zheng, S. Li.Grain refinement in pure aluminum severely deformed by Equal channel angular extrusion via extended processing routes[J].Metall. Mater. Trans. A, 2014, 45: 2601.
[11]O.V. Mishin, S. Li.Analysis of crystallographic textures in aluminum plates processed by equal channel angular extrusion[J].Metall. Mater. Trans. A, 2014, 45: 1689.
[12]L. Yang, X. Li, S. Li.Role of strain path change in grain refinement by severe plastic deformation: A case study of equal channel angular extrusion.Acta Mater., 2013, 61: 4398.
[13]S. Li.Directionality of slip traces and banded structures in fcc materials processed by equal-channel angular extrusion[J].Scripta Mater., 2012, 67: 348.
[14]H. Li, F. Sun, S. Li.Observation and modeling of the through-thickness texture gradient in commercial-purity aluminum sheets processed by accumulative roll-bonding[J].Acta Mater., 2010, 58: 1317.
[15]S. Li, J.H. Cho, S.B. Kang, H. Li, X. Gong.Microstructure and mechanical properties of twin-roll cast Mg–4.5Al–1.0Zn sheets processed by differential speed rolling[J].Mater. Design, 2010, 31: 1581.
[16]S. Li.A crystal plasticity-based explanation for the dependencies of grain refinement on processing route and die angle in equal channel angular extrusion.Scripta Mater., 2009, 60: 706.
[17]S. Li.Orientation stability in equal channel angular extrusion. Part I: Face-centered cubic and body-centered cubic materials[J].Acta Mater., 2008, 56: 1018.
[18]S. Li.Orientation stability in equal channel angular extrusion. Part II: Hexagonal close-packed materials[J].Acta Mater., 2008, 56: 1031.
[19]S. Li.Comments on “Influences of crystallographic orientations on deformation mechanism and grain refinement of Al single crystals subjected to one-pass equal-channel angular pressing”.Scripta Mater., 2008, 59: 418.
[20]S. Li.Effect of strain path change on the plastic responses during uniaxial loading of materials pre-deformed by equal channel angular extrusion[J].Scripta Mater., 2007, 56: 445.
total31 1/2
first
previous
next
last
Page