
Journal Publications
- [1]X. Hu, Q. Liu, Global solution to the 3D inhomogeneous nematic liquid crystal flows with variable density..J. Differential Equations, 264 (2018) (no. 8,) : 5300–5332..
- [2]Q.Liu, The 3D nonlinear dissipative system modeling electro-diffusion with blow-up in one direction..Commun. Math. Sci., 17 (2019) (no. 1,) : 131–147..
- [3]J. Zhao, Q. Liu, Well-posedness and decay for the dissipative system modeling electro-hydrodynamics in negative Besov spaces..J. Differential Equations, 263(2017) (no. 2,) : 1293–1322..
- [4]Q. Liu, S. Liu, W. Tan, X. Zhong, Global well-posedness of the 2D nonhomogeneous incompressible nematic liquid crystal flows..J. Differential Equations, 261 (2016) (no. 11,) : 6521–6569..
- [5]Q. Liu, Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen-Leslie system.Discrete Contin. Dyn. Syst., 41 (2021), (no. 9,) : 4397–4419..
- [6]Q. Liu, J. Zhao, S. Cui, Uniqueness of weak solution to the generalized magneto-hydrodynamic system..Ann. Mat. Pura Appl. (4), 193 (2014) (no. 3,) : 699–722..
- [7]Q. Liu, On the temporal decay of solutions to the two-dimensional nematic liquid crystal flows..Math. Nachr., 289 (2016) (no. 5-6,) : 678–692..
- [8]Q. Liu, T. Zhang, J. Zhao, Global solutions to the 3D incompressible nematic liquid crystal system..J. Differential Equations, 258 (2015) (no. 5,) : 1519–1547..
- [9]L. Li, Q. Liu, X. Zhong, Global strong solution to the two-dimensional density-dependent nematic liquid crystal flows with vacuum..Nonlinearity, 30 (2017), (no. 11,) : 4062–4088..
- [10]Q. Liu, Global well-posedness and temporal decay estimates for the 3D nematic liquid crystal flows..J. Math. Fluid Mech., 20 (2018) (no. 4,) : 1459–1485..
- [11]Q. Liu, C. Wang, X. Zhang, J. Zhou, On optimal boundary control of Ericksen-Leslie system in dimension two.Calc. Var. Partial Differential Equations, 59 (2020), (no. 1,) : Paper No. 38, 64 pp..
- [12]Q. Liu, On partial regularity criterion for the co-rotational Beris-Edwards system modeling nematic liquid crystal flow..J. Differential Equations, 301 (2021): 300–329..
- [13]Q. Liu, T. Zhang, J. Zhao, Well-posedness for the 3D incompressible nematic liquid crystal system in the critical Lp framework..Discrete Contin. Dyn. Syst., 36 (2016) (no. 1) : 371–402..
- [14]Q. Liu, J. Zhao, Blowup criteria in terms of pressure for the 3D nonlinear dissipative system modeling electro-diffusion..J. Evol. Equ., 18 (2018), (no. 4,) : 1675–1696..
- [15]Q.Liu,Regularity of weak solutions and the number of singular points to the 3D simplified nematic liquid crystal system..J. Funct. Anal., 277 (2019) (no. 12,) : 108294, 33 pp..
- [16]Q. Liu, Space-time derivative estimates of the Koch-Tataru solutions to the nematic liquid crystal system in Besov spaces..J. Differential Equations, 258 (2015) (no. 12,) : 4368–4397..
- [17]Q. Liu, J. Zhao, S. Cui, Existence and regularizing rate estimates of solutions to a generalized magneto-hydrodynamic system in pseudomeasure spaces..Ann. Mat. Pura Appl. (4), 191 (2012) (no. 2,) : 293–309..
total17 1/1 | firstpreviousnextlast |
|
|
-
刘桥

 Mobile:1abf43e0680e34abcdf063caf6a07eaddebf66362fa59b6fad46674175d021911149faccfd02788e88ae9bb9e57c9866084359e438a79faa50244464ec2cb7ef27481312b80aed260e3e6f912df3c710fdd1e644b04d3f19468f395edfa80c49036299e8900c981b2a00ff7b881a73fb8b5cd56b6049d1a3ab66040aa505e786
 Email:44b462839667c4866978e0180e4090e3bcc305f6af76a8040c2e8df08bd90e011c380c6c4ea4898209c40beac0e2f5a7fcbc76d50206d80fcff8be10958df96e58b1692c87f118e046eac0fdd16167c4bccdd0a2a71908e1c33ff32ad51a023fcc7802605edfa7ac1e78547e6560db2403600f1cecddd80aec2565b7217f7ab9
|