个人信息Personal Information
教授
博士生导师
教师英文名称:ZHANG Ning
教师拼音名称:zhangning
电子邮箱:
所在单位:材料科学与工程学院
学历:博士研究生毕业
办公地点:米塔尔楼325
性别:男
联系方式:nzhang@csu.edu.cn
学位:理学博士学位
在职信息:在职
毕业院校:北海道大学
学科:材料科学与工程
其他联系方式Other Contact Information
邮编 :
传真 :
通讯/办公地址 :
办公室电话 :
邮箱 :
个人简介Personal Profile
张宁,男,教授,博士生导师,材料化学系主任。在材料科学与工程学院从事教学与科研工作。2006与2009 年在中南大学资源加工与生物工程学院分别获得学士与硕士学位;2012年9月获得北海道大学化学博士学位。2009年10月至2012年9月,在日本国立材料科学研究所 (NIMS) 任Junior Researcher;2012 年10 月至2014 年3 月,在日本理化学研究所 (RIKEN) 做博士后研究;2016年1月至2018年1月,以“香江学者计划”项目在香港城市大学做交流研究。主要从事光催化材料、电催化材料、矿物材料功能化等研究。目前,主持和完成国家自然科学金两项,在Advanced Functional Materials、ACS Nano、Applied Catalysis B: Environmental、Nano Energy、Green Chemistry、Small、Small Methods 等期刊上发表相关领域SCI论文60余篇,授权发明专利4项,参与编辑英文专著1部,获得湖南省自然科学二等奖1项。
PS:材料化学系长期引进教授、副教授、讲师、博士后等各层次科研人员(方向:催化材料、储能材料、高分子材料、陶瓷材料、半导体材料、其他功能材料等),欢迎联系: nzhang@csu.edu.cn
研究方向
1. 半导体光催化材料 (CO2还原、裂解水、环境净化、污水处理)
2. 过渡金属基电催化材料 (CO2还原、裂解水、硝酸根还原、固氮)
3. 纳米功能材料 (二维材料、层状材料)
4. 矿物材料功能化 (层状水滑石、蛇纹石材料的结构调控与功能化)
主持项目
1. 国家自然科学基金面上项目 2021-2024
2. 国家自然科学基金青年项目 2015-2017
3. 湖南省自然科学基金面上项目 2022-2024
4. 长沙市自然科学基金 2021-2022
5. “香江学者计划”项目 2016-2018
获得奖励
1. 湖南省自然科学二等奖,2017
社会兼职
Frontiers in materials 客座编辑, 专题: Advances in Photocatalytic and Electrocatalytic Materials for Producing Renewable Fuels
编写专著
Photo- and Electro- Catalytic Process, WILEY-VCH, 2022 (参与)
发表论文:
1. Lin, J.; Zhang, N. Constructing Strain in Electrocatalytic Materials for CO2 Reduction Reactions. Green Chem. 2024, 4449–4467. https://doi.org/10.1039/D4GC00514G.
2. Huang, Z.; Yang, B.; Zhou, Y.; Luo, W.; Chen, G.; Liu, M.; Liu, X.; Ma, R.; Zhang, N. Tungsten Nitride/Tungsten Oxide Nanosheets for Enhanced Oxynitride Intermediate Adsorption and Hydrogenation in Nitrate Electroreduction to Ammonia. ACS Nano 2023, 17 (24), 25091–25100. https://doi.org/10.1021/acsnano.3c07734.
3. Zhou, Y.; Yang, B.; Huang, Z.; Chen, G.; Tang, J.; Liu, M.; Liu, X.; Ma, R.; Mei, Z.; Zhang, N. Cu-Ni Alloy Nanocrystals with Heterogenous Active Sites for Efficient Urea Synthesis. Appl. Catal. B Environ. 2024, 343, 123577. https://doi.org/10.1016/j.apcatb.2023.123577.
4. Xiao, Z.; Zhou, W.; Yang, B.; Liao, C.; Kang, Q.; Chen, G.; Liu, M.; Liu, X.; Ma, R.; Zhang, N. Tuned D-Band States over Lanthanum Doped Nickel Oxide for Efficient Oxygen Evolution Reaction. Nano Mater. Sci. 2023, 5 (2), 228–236. https://doi.org/10.1016/j.nanoms.2022.07.002.
5. Yang, B.; Zhou, Y.; Huang, Z.; Mei, B.; Kang, Q.; Chen, G.; Liu, X.; Jiang, Z.; Liu, M.; Zhang, N. Electron-Deficient Cobalt Nanocrystals for Promoted Nitrate Electrocatalytic Reduction to Synthesize Ammonia. Nano Energy 2023, 117 (September), 108901. https://doi.org/10.1016/j.nanoen.2023.108901.
6. Zang, Y.; Huang, S.; Yang, B.; Chen, G.; Liu, X.; Zhang, N. Constructing Collaborative Interface between Mo2N and NiS as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Appl. Surf. Sci. 2023, 611 (PB), 155656. https://doi.org/10.1016/j.apsusc.2022.155656.
7. Liu, P.; Yang, B.; Xiao, Z.; Wang, S.; Wu, S.; Liu, M.; Chen, G.; Liu, X.; Ma, R.; Zhang, N. Engineering D-Band States of (CuGa) Zn1-2Ga2S4 Material for Photocatalytic Syngas Production. J. Energy Chem. 2023, 79, 365–372. https://doi.org/10.1016/j.jechem.2023.01.015.
8. Luo, W.; Li, A.; Yang, B.; Pang, H.; Fu, J.; Chen, G.; Liu, M.; Liu, X.; Ma, R.; Ye, J.; Zhang, N. Synthesis of a Hexagonal Phase ZnS Photocatalyst for High CO Selectivity in CO2 Reduction Reactions. ACS Appl. Mater. Interfaces 2023, 15 (12), 15387–15395. https://doi.org/10.1021/acsami.2c21966.
9. Huang, S.; Luo, D.; Yang, B.; Chen, G.; Liu, X.; Mei, Z.; Zhang, N. Constructing Highly Active Interface between Layered Ni(OH)2 and Porous Mo2N for Efficient Electrocatalytic Oxygen Evolution Reaction. Int. J. Hydrogen Energy 2023, 48 (58), 22091–22100. https://doi.org/10.1016/j.ijhydene.2023.03.121.
10. Yang, Z.-X.; Li, X.-G.; Yao, Q.-L.; Lu, Z.-H.; Zhang, N.; Xia, J.; Yang, K.; Wang, Y.-Q.; Zhang, K.; Liu, H.-Z.; Zhang, L.-T.; Lin, H.-J.; Zhou, Q.-J.; Wang, F.; Yu, Z.-M.; Ma, J.-M. 2022 Roadmap on Hydrogen Energy from Production to Utilizations. Rare Met. 2022, 41 (10), 3251–3267. https://doi.org/10.1007/s12598-022-02029-7.
11. Yang, B.; Luo, D.; Wu, S.; Zhang, N.; Ye, J. Nanoscale Hetero-Interfaces for Electrocatalytic and Photocatalytic Water Splitting. Sci. Technol. Adv. Mater. 2022, 23 (1), 587–616. https://doi.org/10.1080/14686996.2022.2125827.
12. Mei, Z.; Zhou, Y.; Lv, W.; Tong, S.; Yang, X.; Chen, L.; Zhang, N. Recent Progress in Electrocatalytic Urea Synthesis under Ambient Conditions. ACS Sustain. Chem. Eng. 2022, 10 (38), 12477–12496. https://doi.org/10.1021/acssuschemeng.2c03681.
13. Luo, D.; Yang, B.; Mei, Z.; Kang, Q.; Chen, G.; Liu, X.; Zhang, N. Tuning the D-Band States of Ni-Based Serpentine Materials via Fe 3+ Doping for Efficient Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2022, 14 (47), 52857–52867. https://doi.org/10.1021/acsami.2c14720.
14. Yang, B.; Zhang, N. Tuning the Electronic Structure of Layered Co-Based Serpentine Nanosheets for Efficient Oxygen Evolution Reaction. J. Phys. D. Appl. Phys. 2022, 55 (32), 324001. https://doi.org/10.1088/1361-6463/ac6d27.
15. Liu, P.; Wu, S.; Wu, Y.; Zhang, N. Synthesis of Zn 0.4 (CuGa) 0.3 Ga 2 S 4 /CdS Photocatalyst for CO 2 Reduction. J. Inorg. Mater. 2022, 37 (1), 15. https://doi.org/10.15541/jim20210480.
16. Luo, D.; Zang, Y.; Kang, Q.; Chen, G.; Liu, X.; Zhang, N. Serpentine Ni3Ge2O5(OH)4Nanosheets Grow on Porous Mo2N for an Efficient Oxygen Evolution Reaction. Energy and Fuels 2022, 36 (19), 11467–11476. https://doi.org/10.1021/acs.energyfuels.2c01025.
17. Pan, Y.; Wang, Y.; Wu, S.; Chen, Y.; Zheng, X.; Zhang, N. One-Pot Synthesis of Nitrogen-Doped Tio2 with Supported Copper Nanocrystalline for Photocatalytic Environment Purification under Household White Led Lamp. Molecules 2021, 26 (20), 6221. https://doi.org/10.3390/molecules26206221.
18. Liao, C.; Xiao, Z.; Zhang, N.; Liang, B.; Chen, G.; Wu, W.; Pan, J.; Liu, M.; Zheng, X. R.; Kang, Q.; Cao, X.; Liu, X.; Ma, R. Photo-Irradiation Tunes Highly Active Sites over β-Ni(OH)2nanosheets for the Electrocatalytic Oxygen Evolution Reaction. Chem. Commun. 2021, 57 (72), 9060–9063. https://doi.org/10.1039/d1cc03410c.
19. Zhang, N.; Yang, B.; Liu, K.; Li, H.; Chen, G.; Qiu, X.; Li, W.; Hu, J.; Fu, J.; Jiang, Y.; Liu, M.; Ye, J. Machine Learning in Screening High Performance Electrocatalysts for CO2 Reduction. Small Methods 2021, 5 (11), 2100987. https://doi.org/10.1002/smtd.202100987.
20. Li, A.; Pang, H.; Li, P.; Zhang, N.; Chen, G.; Meng, X.; Liu, M.; Liu, X.; Ma, R.; Ye, J. Insights into the Critical Dual-Effect of Acid Treatment on ZnxCd1-XS for Enhanced Photocatalytic Production of Syngas under Visible Light. Appl. Catal. B Environ. 2021, 288, 119976. https://doi.org/10.1016/j.apcatb.2021.119976.
21. Xiao, Z.; Zhou, W.; Zhang, N.; Liao, C.; Huang, S.; Chen, G.; Chen, G.; Liu, M.; Liu, X.; Ma, R. Lithium Doped Nickel Oxide Nanocrystals with a Tuned Electronic Structure for Oxygen Evolution Reaction. Chem. Commun. 2021, 57 (49), 6070–6073. https://doi.org/10.1039/d1cc01655e.
22. Zang, Y.; Yang, B.; Li, A.; Liao, C.; Chen, G.; Liu, M.; Liu, X.; Ma, R.; Zhang, N. Tuning Interfacial Active Sites over Porous Mo2N-Supported Cobalt Sulfides for Efficient Hydrogen Evolution Reactions in Acid and Alkaline Electrolytes. ACS Appl. Mater. Interfaces 2021, 13 (35), 41573–41583. https://doi.org/10.1021/acsami.1c10060.
23. Liang, D.; Liang, X.; Zhang, Z.; Wang, H.; Zhang, N.; Wang, J.; Qiu, X. A Regenerative Photoelectrochemical Sensor Based on Functional Porous Carbon Nitride for Cu2+ Detection. Microchem. J. 2020, 156. https://doi.org/10.1016/j.microc.2020.104922.
24. Jiang, K.; Zhu, L.; Wang, Z.; Liu, K.; Li, H.; Hu, J.; Pan, H.; Fu, J.; Zhang, N.; Qiu, X.; Liu, M. Plasma-Treatment Induced H2O Dissociation for the Enhancement of Photocatalytic CO2 Reduction to CH4 over Graphitic Carbon Nitride. Appl. Surf. Sci. 2020, 508. https://doi.org/10.1016/j.apsusc.2019.145173.
25. Wu, S.; Pang, H.; Zhou, W.; Yang, B.; Meng, X.; Qiu, X.; Chen, G.; Zhang, L.; Wang, S.; Liu, X.; Ma, R.; Ye, J.; Zhang, N. Stabilizing CuGaS2 by Crystalline CdS through an Interfacial Z-Scheme Charge Transfer for Enhanced Photocatalytic CO2 Reduction under Visible Light. Nanoscale 2020, 12 (16), 8693–8700. https://doi.org/10.1039/d0nr00483a.
26. An, P.; Wei, L.; Li, H.; Yang, B.; Liu, K.; Fu, J.; Li, H.; Liu, H.; Hu, J.; Lu, Y. R.; Pan, H.; Chan, T. S.; Zhang, N.; Liu, M. Enhancing CO2reduction by Suppressing Hydrogen Evolution with Polytetrafluoroethylene Protected Copper Nanoneedles. J. Mater. Chem. A 2020, 8 (31), 15936–15941. https://doi.org/10.1039/d0ta03645e.
27. Yang, B.; Zhang, N.; Chen, G.; Liu, K.; Yang, J.; Pan, A.; Liu, M.; Liu, X.; Ma, R.; Qiu, T. Serpentine CoxNi3-XGe2O5(OH)4 Nanosheets with Tuned Electronic Energy Bands for Highly Efficient Oxygen Evolution Reaction in Alkaline and Neutral Electrolytes. Appl. Catal. B Environ. 2020, 260, 118184. https://doi.org/10.1016/j.apcatb.2019.118184.
28. Liao, C.; Yang, B.; Zhang, N.; Liu, M.; Chen, G.; Jiang, X.; Chen, G.; Yang, J.; Liu, X.; Chan, T. S.; Lu, Y. J.; Ma, R.; Zhou, W. Constructing Conductive Interfaces between Nickel Oxide Nanocrystals and Polymer Carbon Nitride for Efficient Electrocatalytic Oxygen Evolution Reaction. Adv. Funct. Mater. 2019, 29 (40), 1904020. https://doi.org/10.1002/adfm.201904020.
29. Li, Y.; Liao, C.; Tang, K.; Zhang, N.; Qi, W.; Xie, H.; He, J.; Yin, K.; Gao, Y.; Wang, C. Cobalt Hydroxide-Black Phosphorus Nanosheets: A Superior Electrocatalyst for Electrochemical Oxygen Evolution. Electrochim. Acta 2019, 297, 40–45. https://doi.org/10.1016/j.electacta.2018.11.171.
30. Zheng, Z.; Zhang, N.; Wang, T.; Chen, G.; Qiu, X.; Ouyang, S.; Mei, Z.; Liu, X.; Ma, R. Ag1.69Sb2.27O6.25 Coupled Carbon Nitride Photocatalyst with High Redox Potential for Efficient Multifunctional Environmental Applications. Appl. Surf. Sci. 2019, 487 (March), 82–90. https://doi.org/10.1016/j.apsusc.2019.05.043.
31. Zhang, N.; Chen, C.; Chen, Y.; Chen, G.; Liao, C.; Liang, B.; Zhang, J.; Li, A.; Yang, B.; Zheng, Z.; Liu, X.; Pan, A.; Liang, S.; Ma, R. Ni2P2O7 Nanoarrays with Decorated C3N4 Nanosheets as Efficient Electrode for Supercapacitors. ACS Appl. Energy Mater. 2018, 1 (5), 2016–2023. https://doi.org/10.1021/acsaem.8b00114.
32. Zhang, N.; Yang, B.; He, Y.; He, Y.; Liu, X.; Liu, M.; Song, G.; Chen, G.; Pan, A.; Liang, S.; Ma, R.; Venkatesh, S.; Roy, V. A. L. Serpentine Ni 3 Ge 2 O 5 (OH) 4 Nanosheets with Tailored Layers and Size for Efficient Oxygen Evolution Reactions. Small 2018, 14 (48), 1803015. https://doi.org/10.1002/smll.201803015.
33. Liang, B.; Chen, Y.; He, J.; Chen, C.; Liu, W.; He, Y.; Liu, X.; Zhang, N.; Roy, V. A. L. Controllable Fabrication and Tuned Electrochemical Performance of Potassium Co-Ni Phosphate Microplates as Electrodes in Supercapacitors. ACS Appl. Mater. Interfaces 2018, 10 (4), 3506–3514. https://doi.org/10.1021/acsami.7b14552.
34. Liang, B.; Zhang, N.; Chen, C.; Liu, X.; Ma, R.; Tong, S.; Mei, Z.; Roy, V. A. L.; Wang, H.; Tang, Y. Hierarchical Yolk-Shell Layered Potassium Niobate for Tuned PH-Dependent Photocatalytic H2 Evolution. Catal. Sci. Technol. 2017, 7 (4), 1000–1005. https://doi.org/10.1039/c6cy02640k.
35. Chen, C.; Zhang, N.; Liu, X.; He, Y.; Wan, H.; Liang, B.; Ma, R.; Pan, A.; Roy, V. A. L. Polypyrrole-Modified NH4NiPO4·H2O Nanoplate Arrays on Ni Foam for Efficient Electrode in Electrochemical Capacitors. ACS Sustain. Chem. Eng. 2016, 4 (10), 5578–5584. https://doi.org/10.1021/acssuschemeng.6b01347.
36. Yuan, P.; Zhang, N.; Zhang, D.; Liu, T.; Chen, L.; Ma, R.; Qiu, G.; Liu, X. Controllable Synthesis of Layered Co-Ni Hydroxide Hierarchical Structures for High-Performance Hybrid Supercapacitors. J. Phys. Chem. Solids 2016, 88, 8–13. https://doi.org/10.1016/j.jpcs.2015.09.006.
37. Zhang, N.; Chen, C.; Mei, Z.; Liu, X.; Qu, X.; Li, Y.; Li, S.; Qi, W.; Zhang, Y.; Ye, J.; Roy, V. A. L.; Ma, R. Monoclinic Tungsten Oxide with {100} Facet Orientation and Tuned Electronic Band Structure for Enhanced Photocatalytic Oxidations. ACS Appl. Mater. Interfaces 2016, 8 (16), 10367–10374. https://doi.org/10.1021/acsami.6b02275.
38. Yuan, P.; Zhang, N.; Zhang, D.; Liu, T.; Chen, L.; Liu, X.; Ma, R.; Qiu, G. Fabrication of Nickel-Foam-Supported Layered Zinc–Cobalt Hydroxide Nanoflakes for High Electrochemical Performance in Supercapacitors. Chem. Commun. 2014, 50 (76), 11188–11191. https://doi.org/10.1039/C4CC05057F.
39. Zhang, N.; Ouyang, S.; Kako, T.; Ye, J. Mesoporous Zinc Germanium Oxynitride for CO2 Photoreduction under Visible Light. Chem. Commun. 2012, 48 (9), 1269–1271. https://doi.org/10.1039/c2cc16900b.
40. Zhang, N.; Ouyang, S.; Kako, T.; Ye, J. Synthesis of Hierarchical Ag2ZnGeO4 Hollow Spheres for Enhanced Photocatalytic Property. Chem. Commun. 2012, 48 (79), 9894–9896. https://doi.org/10.1039/c2cc34738e.
41. Zhang, N.; Ouyang, S.; Li, P.; Zhang, Y.; Xi, G.; Kako, T.; Ye, J. Ion-Exchange Synthesis of a Micro/Mesoporous Zn2GeO4 Photocatalyst at Room Temperature for Photoreduction of CO2. Chem. Commun. 2011, 47 (7), 2041–2043. https://doi.org/10.1039/c0cc04687f.
42. Zhang, N.; Che, R. C.; Shen, J.; Zhou, W. Y.; Duan, X. F. Polarity and Inverse Boundary of Sn-Doped ZnO Bicrystal Nanobelts Determined by Electron Energy-Loss Spectroscopy. Appl. Phys. A Mater. Sci. Process. 2009, 97 (4), 943–946. https://doi.org/10.1007/s00339-009-5367-z.
43. Zhang, N.; Yi, R.; Shi, R.; Gao, G.; Chen, G.; Liu, X. Novel Rose-like ZnO Nanoflowers Synthesized by Chemical Vapor Deposition. Mater. Lett. 2009, 63 (3–4), 496–499. https://doi.org/10.1016/j.matlet.2008.11.046.
44. Zhang, N.; Yi, R.; Zhou, L.; Gao, G.; Shi, R.; Qiu, G.; Liu, X. Lanthanide Hydroxide Nanorods and Their Thermal Decomposition to Lanthanide Oxide Nanorods. Mater. Chem. Phys. 2009, 114 (1), 160–167. https://doi.org/10.1016/j.matchemphys.2008.09.004.
45. Zhang, N.; Yi, R.; Wang, Z.; Shi, R.; Wang, H.; Qiu, G.; Liu, X. Hydrothermal Synthesis and Electrochemical Properties of Alpha-Manganese Sulfide Submicrocrystals as an Attractive Electrode Material for Lithium-Ion Batteries. Mater. Chem. Phys. 2008, 111 (1), 13–16. https://doi.org/10.1016/j.matchemphys.2008.03.040.
46. Zhang, N.; Liu, X.; Yi, R.; Shi, R.; Gao, G.; Qiu, G. Selective and Controlled Synthesis of Single-Crystalline Yttrium Hydroxide/Oxide Nanosheets and Nanotubes. J. Phys. Chem. C 2008, 112 (46), 17788–17795. https://doi.org/10.1021/jp803831g.