石雷,男,博士毕业于哈尔滨工业大学,主要从事太阳能利用、悬浮液传热特性及应用等研究。主持国家自然科学基金一项,湖南省自然科学基金一项。曾参与国家重点研发计划项目、军科委基础加强计划重点基础研究项目、国家自然科学基金联合基金重点项目等。目前已发表和收录SCI论文20余篇,其中4篇为该领域ESI高被引论文,2篇曾入选ESI热点论文。授权发明专利7项。曾获博士研究生国家奖学金,宝钢优秀奖学金,第十届哈工大研究生“十佳英才”,第五届哈工大“春晖创新成果一等奖”等荣誉,博士论文获“中国颗粒学会优秀博士学位论文奖”。
近年发表论文如下:
[1] Shi L, Zhang S, Arshad A, Hu Y, He Y*, Yan Y. Thermo-physical properties prediction of carbon-based magnetic nanofluids based on an artificial neural network. Renewable and Sustainable Energy Reviews. 2021, 149: 111341.
[2] Wu Y, Tang T, Shi L, He Y*. Rapid hydrate-based methane storage promoted by bilayer surfactant-coated Fe3O4 nanoparticles under a magnetic field. Fuel. 2021, 303: 121248.
[3] Arshad A*, Jabbal M, Shi L, Darkwa J, Weston N, Yan Y*. Development of TiO2/RT–35HC based nanocomposite phase change materials (NCPCMs) for thermal management applications. Sustainable Energy Technologies and Assessments. 2021, 43: 100865.
[4] Arshad A*, Jabbal M, Shi L, Yan Y*. Thermophysical characteristics and enhancement analysis of carbon-additives phase change mono and hybrid materials for thermal management of electronic devices. The Journal of Energy Storage. 2021, 34: 102231.
[5] Shi L, Hu Y, He Y*. Magneto-responsive thermal switch for remote-controlled locomotion and heat transfer based on magnetic nanofluid. Nano Energy. 2020, 71: 104582. (ESI Highly Cited Paper)
[6] Shi L, Hu Y, Bai Y, He Y*. Dynamic tuning of magnetic phase change composites for solar-thermal conversion and energy storage. Applied Energy. 2020, 263: 114570.
[7] Shi L, Wang X, Hu Y, He Y*, Yan Y. Solar-thermal conversion and steam generation: a review. Applied Thermal Engineering. 2020: 115691.
[8] Shi L, Hu Y, Feng D, He Y*, Yan Y. Magnetically-accelerated photo-thermal conversion and energy storage based on bionic porous nanoparticles. Solar Energy Materials & Solar Cells. 2020, 217: 110681.
[9] Shi L, Wang X, Hu Y, He Y*. Investigation of photocatalytic activity through photo-thermal heating enabled by Fe3O4/TiO2 composite under magnetic field. Solar Energy. 2020, 196: 505-512.
[10] Shi L, Wang X, Hu Y, He Y*, Yan Y. Bio-inspired recyclable carbon interface for solar steam generation. Journal of Bionic Engineering. 2020, 17: 315-325.
[11] Shi L, He Y*, Hu Y, Wang X, Jiang B, Huang Y. Synthesis of size-controlled hollow Fe3O4 nanospheres and their growth mechanism. Particuology. 2020, 49: 16-23.
[12] Hu Y, Shi L, Zhang Z, et al. Magnetic regulating the phase change process of Fe3O4-paraffin wax nanocomposites in a square cavity. Energy Conversion and Management. 2020, 213: 112829.
[13] Zhang S, Feng D, Shi L, Wang L, Jin Y, Tian L, Li Z, Wang G, Zhao L, Yan Y*. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage. Renewable and Sustainable Energy Reviews. 2020, 135: 110127. (ESI Highly Cited Paper)
[14] Shi L, He Y*, Hu Y, Wang X. Controllable natural convection in a rectangular enclosure filled with Fe3O4@CNT nanofluids. International Journal of Heat and Mass Transfer. 2019, 140: 399-409.
[15] Shi L, Hu Y, He Y*. Magnetocontrollable convective heat transfer of nanofluid through a straight tube. Applied Thermal Engineering. 2019, 162: 114220.
[16] Shi L, He Y*, Wang X, Hu Y. Recyclable photo-thermal conversion and purification systems via Fe3O4@TiO2 nanoparticles. Energy Conversion and Management. 2018, 171: 272-278.
[17] Shi L, He Y*, Hu Y, Wang X. Thermophysical properties of Fe3O4@CNT nanofluid and controllable heat transfer performance under magnetic field. Energy Conversion and Management. 2018, 177: 249-257.
[18] Shi L, He Y*, Huang Y, Jiang B. Recyclable Fe3O4@CNT nanoparticles for high-efficiency solar vapor generation. Energy Conversion and Management. 2017, 149: 401-408.
[19] Wang X, He Y*, Liu X, Shi L, Zhu J. Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation. Solar Energy. 2017, 157: 35-46. (ESI Highly Cited Paper)
[20] Wang X, He Y*, Cheng G, Shi L, Liu X, Zhu J. Direct vapor generation through localized solar heating via carbon-nanotube nanofluid. Energy Conversion and Management. 2016, 130: 176-183. (ESI Highly Cited Paper)
访问量:
中南大学版权所有 湘ICP备05005659号-1