“如何建立鲁棒的遥感数据表征模型”是实现高分辨率遥感影像智能精准解译的关键科学问题,其核心可归结为以下两个基本问题:1)遥感视觉表征的可分性问题;2)遥感视觉表征的不变性问题;
课题组自2015年开始瞄准这一关键科学问题开展研究工作,主要学术贡献包括:1)率先提出数据驱动的遥感空谱特征联合学习方法,推动了遥感视觉表征范式从人工构筑特征到数据驱动特征学习的转变;2) 创建了广义学习信号驱动的遥感视觉表征自学习框架,突破了现有方法特征学习质量标签依赖的瓶颈问题,使得利用海量遥感数据进行特征学习成为可能;3) 建立数据驱动和知识驱动的信息耦合机制,提出了遥感数据-先验知识协同表征方法,解决了干扰条件下仅用视觉特征难以完备表征的瓶颈问题。主要代表性成果包括:
1. Chao Tao,Ji Qi, Mingning Guo, et,al, “Self-Supervised Remote Sensing Feature Learning: Learning Paradigms, Challenges, and Future Works”, IEEE Transactions on Geoscience and Remote Sensing, 61:1-26,2023【Paper】
2. 陶超,阴紫薇,李海峰*,朱庆,高分辨率遥感影像智能解译:从监督学习到自监督学习,测绘学报, 50(8): 1122-1134, 2021 【Paper】
3. Haifeng Li,Yi Li, Guo Zhang, Qing Zhu, Chao Tao*, Global and local contrastive self-supervised learning for semantic segmentation of HR remote sensing images, IEEE Transactions on Geoscience and Remote Sensing, 60(5618014) :1-14,2022 【Paper】【Code】
4. Chao Tao, Ji Qi , HaiFeng Li*,TOV: The Original Vision Model for Optical Remote Sensing Image Understanding via Self-Supervised Learning, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,16:4916 – 4930,2023【Paper】【预训练基础模型与数据】
5. WeiPeng Lu, Chao Tao, Ji Qi., et,al,“A unified deep learning framework for urban functional zone extraction based on multi-source heterogeneous data” , Remote Sensing of Environment, 2022, 270:112830 ,【Paper】 【Code】
6. Chao Tao, Hongbo Pan, Yangsheng Li, Zhengrong Zou, Unsupervised Spectral-Spatial Feature Learning with Stacked Sparse Autoencoder for Hyperspectral Imagery Classification, IEEE Geosciences and Remote Sensing Letter , 12(12):2348-2442,2015