中文
  • 王世良
  • Doctoral degree
  • Professor
  • School of Physics
 

Work Experience

  • 2015.10Now

    中南大学物理与电子学院      教授

  • 2013.72016.6

    The University of Queensland      School of Mechanical and Mining Engineering    获UQ Postdoctoral Research Fellowships资助,从事纳米力学专项研究

  • 2011.22012.1

    The University of Queensland      School of Mechanical and Mining Engineering    访问学者

  • 2009.102015.9

    中南大学物理与电子学院      副教授

  • 2003.102009.9

    中南大学物理与电子学院      讲师

  • 2001.72003.9

    中南大学物理与电子学院      助教

 

Personal Information

王世良,博士,中南大学物理与电子学院 教授。主要从事纳米材料,纳米力学,表面与界面力学,微纳操纵技术、纳米制造与仿生技术等方面的研究。曾获全国优秀博士学位论文提名奖,湖南省优秀博士学位论文奖,湖南省自然科学优秀论文一等奖,澳大利亚昆士兰大学博士后研究员基金(UQ Postdoctoral Research Fellowships,约200万人民币,2013-07至2016-06)。主持包括3项国家自然科学基金项目和1项澳大利亚研究会探索项目(ARC Discovery Project)在内的十多项研究课题。作为第一作者或通讯作者在Advanced Materials, Advanced Science,Small, Carbon, Nanoscale, Applied Physics Letters等国内外知名期刊上发表论文100多篇。


研究课题1:基于光学显微镜纳米操控技术的纳米力学表征。利用光学显微镜中的纳米操纵器(课题组自主搭建的光学显微镜纳米操纵平台),对单根纳米线/纳米带/纳米管进行可视化实时操纵;结合扫描/透射电子显微镜和原子力显微镜等分析手段,定量表征和研究单根纳米线/纳米带/纳米管的力学性能,及其与接触基底之间的黏附行为。

研究课题2:仿生黏附材料的研制及其初步应用。通过各种材料合成和加工手段,制备出宏观尺度的仿生微/纳纤维阵列结构(平方厘米量级),定量研究微/纳纤维阵列结构的黏附性能和机理;将研制的仿生微/纳纤维阵列结构应用于新型爬壁机器人和软体夹持器等。

研究课题3:具有核/壳结构的磁性合金纳米颗粒的制备及其电磁波吸波性能研究。通过化学气相沉积方法,合成出碳包覆的磁性合金纳米颗粒,并对其电磁波吸波性能进行系统研究,探究和评估其在雷达波隐身技术中的潜在应用价值。


代表性论文(第一/通讯作者):

[1] Zai M, Yibibulla T, Shah M, Ai L, Yang Y, Hassan S U, Hou L, Wang S*. Development of Electrostatic Dual-Carbon-Fiber Microgrippers for Precise 2D Patterning and 3D Stacking of Single Microparticles. Small Methods, 2025. https://doi.org/10.1002/smtd.202401878

[2] Khan I, Khan S, Wu S-Y, Liu L, Alodhayb A N, Mead J L, Ali S, Ul Hassan S, Chen H-T, Ju S-P, Wang S*. Advanced Fabrication of Graphene-Integrated High-Entropy Alloy@Carbon Nanocomposites as Superior Multifunctional Electrocatalysts. ACS Appl Mater Interfaces, 2025. http://dx.doi.org/10.1021/acsami.4c02468

[3] Hassan S U, Zafar S, Hou L*, Qamar T H, Yang Y, Kuang D, Wang S*. Compositional Engineering and Microwave Absorption Tuning of C-Coated High-Entropy Alloy Nanoparticles via Vapor-Phase Synthesis. Sci China Mater, 2025. https://doi.org/10.1007/s40843-025-3316-1

[4] Ai L, Liu T, Zai M, Hou L, Wang S*. Fabrication and electroadhesion properties of parylene-coated carbon fiber arrays. Bioinspir Biomim, 2025, 20(1): 016003. http://dx.doi.org/10.1088/1748-3190/ad8c88

[5] Shah M, Wu Y, Chen S, Mead J L, Hou L, Liu K, Tao S, Fatikow S, Wang S*. Recent advances in controlled manipulation of micro/nano particles: a review. J Phys D: Appl Phys, 2025, 58(8): 083001. http://dx.doi.org/10.1088/1361-6463/ad9030

[6] Kuang D, Tian Y, Duan W, Tian Z, Sun X*, Wang S*. Effects of degree of graphitization of C shells on microwave absorption of Fe-C core-shell nanoparticles with excellent comparability. J Mater Sci Technol, 2024, 179: 1-8. https://doi.org/10.1016/j.jmst.2023.09.020

[7] Hassan S U, Yang Y, Qamar T H, Shah M, Khan I, Hou L, Wang S*. Core-shell designed high entropy alloy CoNiFeCuV-C nanoparticles for enhanced microwave absorption. Appl Phys Lett, 2024, 124(12): 121902. http://dx.doi.org/10.1063/5.0201983

[8] Akhtar N, Song X, Liu R, Asif M, Mead J L, Hou L*, Wang S*. Optical microscopy-based bridging method to quantify roughness-dependent adhesion of ZnS nanobelts on silicon substrates in air. Appl Phys Lett, 2024, 125(25): 251601. http://dx.doi.org/10.1063/5.0236929

[9] Yang Y, Ul Hassan S, Zai M, Shah M, Zafar S, Hou L, Wang S*. Compositional design of C-coated multi-elemental alloy nanoparticles for superior microwave absorption. J Alloys Compd, 2024, 988: 174316. https://doi.org/10.1016/j.jallcom.2024.174316

[10] Kuang D, Wang S*. Microwave absorption of FeCo-C core–shell nanoparticles with tunable thickness of C shells and the underlying mechanism. Advanced Powder Technology, 2024, 35(12): 104694. https://doi.org/10.1016/j.apt.2024.104694

[11] Yibibulla T, Hou L*, Mead J L, Huang H, Fatikow S, Wang S*. Frictional behaviour of one-dimensional nanomaterials: an experimental perspective. Nanoscale Adv, 2024, 6: 3251–3284. http://dx.doi.org/10.1039/D4NA00039K

[12] Liu L, Yibibulla T, Yang Y, Hassan S U, Hou L, Kuang D, Mead J L, Deng L, Wang S*. Design and microwave absorption characteristics of porous lamellar hard carbon materials. Microporous Mesoporous Mater, 2024, 369: 113041. https://doi.org/10.1016/j.micromeso.2024.113041

[13] Kuang D, Sun X, Mead J L, Wang S*. Synthesis of ultra-small Co3O4-C core-shell nanoparticles with improved thermal stability and microwave absorption properties. Diamond Relat Mater, 2024, 144: 110991. https://doi.org/10.1016/j.diamond.2024.110991

[14] Hassan S U, Yang Y, Kuang D, Qamar T H, Zai M, Zafar S, Hou L, Wang S*. Binary and ternary ferromagnetic alloy/C nanocapsules for improved X-band microwave absorption. J Phys D: Appl Phys, 2024, 57(29): 295303. http://dx.doi.org/10.1088/1361-6463/ad3f2b

[15] Hassan S U, Hou L, Kuang D, Wang S*. Carbon Based Composite Materials for Microwave Absorption in Low Frequency S and C Band: A Review. ChemNanoMat, 2024, 10: e202400406. https://doi.org/10.1002/cnma.202400406

[16] Khan I, Khan S, Wu S-Y, Chen H-T*, Zada A, Linlin L, Ismail A, Ali S, Raziq F, Haider M, Khan J, Ullah S, Ju S-P, Wang S*. Synergistic Functionality of Dopants and Defects in Co-Phthalocyanine/B-CN Z-Scheme Photocatalysts for Promoting Photocatalytic CO2 Reduction Reactions. Small, 2023, 19(25): 2208179. https://doi.org/10.1002/smll.202208179.

[17] Mead J L*, Wang S*, Zimmermann S, Fatikow S, Huang H*. Resolving the Adhesive Behavior of 1D Materials: A Review of Experimental Approaches. Engineering, 2023, 24: 39-72. https://doi.org/10.1016/j.eng.2023.02.012

[18] Kuang D, Wang S*, Deng L, Duan W, Xiao G, Sun X, Chen C. Influences of Metal Core and Carbon Shell on the Microwave Absorption Performance of Cu–C Core–Shell Nanoparticles. Inorg Chem, 2023, 62(14): 5487-5495. http://dx.doi.org/10.1021/acs.inorgchem.2c04477

[19] Cui J, Ma L, Chen G, Jiang N, Ke P, Yang Y*, Wang S*, Nishimura K, Llorca J*. Effect of twin boundaries on the strength of body-centered cubic tungsten nanowires. Mat Sci Eng A-Struct, 2023, 862: 143826. https://doi.org/10.1016/j.msea.2022.143826

[20] Kuang D, Liu L, Mead J L, Deng L, Luo H, Wang S*. Facile synthesis and excellent microwave absorption performance of ultra-small ZnO-doped onion-like carbon nanoparticles. Mater Res Bull, 2023, 157: 112007. https://doi.org/10.1016/j.materresbull.2022.112007

[21] Kuang D, Sun X, Deng L, Wang S*. Achieving excellent tunability of magnetic property and microwave absorption performance of FeZn-C core–shell nanoparticles by designing the Fe/Zn ratio. Advanced Powder Technology, 2023, 34(2): 103931. https://doi.org/10.1016/j.apt.2022.103931

[22] Khan I, Khan S, Zada A, Ismail A, Shah M I A, Ateeq M, Fazil P, Khan J A, Khan A, Jan F, Shams D F, Miao B, Ali S, Wang S*. Suitable energy avenue for the dimension-matched cascade charge transfer mechanism in a g-C3N4/TS-1 heterostructure co-doped with Au–TiO2 for artificial photosynthetic green fuel production. Catalysis Science & Technology, 2023, (13): 4729-4743. http://dx.doi.org/10.1039/D3CY00134B

[23] Hou L, Hou M, Yibibulla T, Mead J L, Fatikow S, Wang S*, Huang H. Frictional shear stress of ZnO nanowires on natural and pyrolytic graphite substrates. Friction, 2022, 10(12): 2059–2068. http://dx.doi.org/10.1007/s40544-021-0577-2

[24] Liu L, Kuang D, Hou L, Luo H, Deng L, Wang S*. Synthesis and microwave absorption performance of layered hard carbon embedded with ZnO nanoparticles. J Alloys Compd, 2022, 895: 162677. https://doi.org/10.1016/j.jallcom.2021.162677

[25] Yibibulla T, Mead J L, Ma L, Hou L, Huang H, Wang S*. The Shearing Behavior of Nanowire Contact Pairs in Air and the Role of Humidity. Phys Status Solidi -R, 2022, 16: 2200130. https://doi.org/10.1002/pssr.202200130

[26] Ma L, Yibibulla T, Jiang Y, Mead J L, Lu M, Wang S*, Huang H. Temperature and size dependent mechanical properties of vapor synthesized zinc tungstate nanowires. Physica E, 2022, 136: 114990. https://doi.org/10.1016/j.physe.2021.114990

[27] Ma L, Jiang Y, Dai G, Mead J L, Yibibulla T, Lu M, Huang H, Fatikow S, Wang S*. Size- and temperature-dependent Young’s modulus of individual ZnS nanobelts. J Phys D: Appl Phys, 2022, 55(36): 364001. http://dx.doi.org/10.1088/1361-6463/ac78a0

[28] Hou L, Gao Y, Yibibulla T, Huang H, Wang S*. Young's modulus and thermal stability of individual Sb2O3 nanowires at elevated temperatures. Phys Status Solidi -R, 2022, 16: 2200039. https://doi.org/10.1002/pssr.202200039

[29] Yibibulla T, Jiang Y, Wang S*, Huang H*. Size- and temperature-dependent Young's modulus of SiC nanowires determined by a laser-Doppler vibration measurement. Appl Phys Lett, 2021, 118(4): 043103. http://dx.doi.org/10.1063/5.0040552

[30] Wang S*, Ma L, Mead L J, Ju S-P*, Li G L, Huang H*. Catalyst-free synthesis and mechanical characterization of TaC nanowires. Sci China-Phys Mech Astron, 2021, 64(5): 254612. https://doi.org/10.1007/s11433-020-1672-7

[31] Yu B, Hou L, Wang S*, Huang H*. The adhesion of a mica nanolayer on a single-layer graphene supported by SiO2 substrate characterised in air. Nanotechnology, 2021, 32(4): 045701. http://dx.doi.org/10.1088/1361-6528/abbf25

[32] Kuang D, Wang S*, Hou L, Luo H, Deng L, Chen C, Song M, Mead J, Huang H. A comparative study on the dielectric response and microwave absorption performance of FeNi-capped carbon nanotubes and FeNi-cored carbon nanoparticles. Nanotechnology, 2021, 32(10): 105701. http://dx.doi.org/10.1088/1361-6528/abc644

[33] Kuang D, Liu L, Hou L, Luo H, Deng L, Song M, Wang S*. Enhanced microwave absorption performance of ultra-small Zn-doped Fe-C nanoparticles. Appl Phys Express, 2021, 14(3): 035005. http://dx.doi.org/10.35848/1882-0786/abe521

[34] Jiang Y, Lu M, Wang S*, Huang H. Temperature coefficient of Young’s modulus of silver microwhiskers determined by a laser Doppler vibration measurement. Mod Phys Lett B, 2021, 35(21): 2150350. http://dx.doi.org/10.1142/s0217984921503504

[35] Hou L, Zhen X, Liu L, Kuang D, Gao Y, Luo H, Deng L, Chen C, Wang S*. Synthesis, thermal stability, magnetic properties, and microwave absorption applications of CoNi-C core-shell nanoparticles with tunable Co/Ni molar ratio. Results in Physics, 2021, 22: 103893. https://doi.org/10.1016/j.rinp.2021.103893

[36] Mead J L, Wang S*, Zimmermann S, Huang H*. Interfacial adhesion of ZnO nanowires on a Si substrate in air. Nanoscale, 2020, 12(15): 8237-8247. http://dx.doi.org/10.1039/D0NR01261K

[37] Yu B, Wang F, Wang S*, Hu Y*, Huang H*. The Adhesion of Mica Nanolayers on a Silicon Substrate in Air. Adv Mater Interfaces, 2020, 7(18): 2000541. http://dx.doi.org/10.1002/admi.202000541

[38] Kuang D, Wang S*, Hou L, Luo H, Deng L, Song M, He J, Huang H. Facile synthesis and influences of Fe/Ni ratio on the microwave absorption performance of ultra-small FeNi-C core-shell nanoparticles. Mater Res Bull, 2020, 126: 110837. https://doi.org/10.1016/j.materresbull.2020.110837

[39] Kuang D, Hou L*, Wang S*, Luo H, Deng L, Mead J L, Huang H, Song M*. Large-scale synthesis and outstanding microwave absorption properties of carbon nanotubes coated by extremely small FeCo-C core-shell nanoparticles. Carbon, 2019, 153: 52-61. https://doi.org/10.1016/j.carbon.2019.06.105

[40] Kuang D, Hou L*, Wang S*, Luo H, Deng L, He J, Song M*. Facile synthesis of Fe/Fe3C-C core-shell nanoparticles as a high-efficiency microwave absorber. Appl Surf Sci, 2019, 493: 1083-1089. https://doi.org/10.1016/j.apsusc.2019.07.073

[41] Hou L, Lee Mead J, Wang S*, Huang H*. The kinetic frictional shear stress of ZnO nanowires on graphite and mica substrates. Appl Surf Sci, 2019, 465: 584-590. https://doi.org/10.1016/j.apsusc.2018.09.143

[42] Yu B, Hou L, Wang S*, Huang H*. Environment-Dependent Adhesion Energy of Mica Nanolayers Determined by a Nanomanipulation-Based Bridging Method. Adv Mater Interfaces, 2019, 6(2): 1801552. http://dx.doi.org/doi:10.1002/admi.201801552

[43] Roy A, Ju S-P, Wang S*, Huang H*. Temperature dependent Young’s modulus of ZnO nanowires. Nanotechnology, 2019, 30(6): 065705. https://doi.org/10.1088/1361-6528/aaf182

[44] Liu T, Wang S*, Hou L, Huang H. Synthesis of Five-fold-twinned silver microwhiskers by physical vapor deposition. Int J Mod Phys B, 2019, 33: 1950371. http://dx.doi.org/10.1142/S0217979219503715

[45] Hou L, Zheng L, Wang S*, Huang H. Young’s modulus of Sb2O3 micro- and nanowires determined accurately by a nanomanipulation-assisted thermal resonance method. AIP Adv, 2019, 9(8): 085101. http://dx.doi.org/10.1063/1.5109161

[46] Mead J L, Xie H, Wang S*, Huang H*. Enhanced adhesion of ZnO nanowires during in situ scanning electron microscope peeling. Nanoscale, 2018, 10: 3410 - 3420. http://dx.doi.org/10.1039/C7NR09423J

[47] Xie H, Wang S*, Huang H*. Effects of Surface Roughness on the Kinetic Friction of SiC Nanowires on SiN Substrates. Tribol Lett, 2018, 66(1): 15. http://dx.doi.org/10.1007/s11249-017-0956-z

[48] Xie H, Mead L J, Wang S*, Fatikow S, Huang H*. Characterizing the surface forces between two individual nanowires using optical microscopy based nanomanipulation. Nanotechnology, 2018, 29(22): 225705. https://doi.org/10.1088/1361-6528/aab3a5

[49] Liang B, Wang S*, Kuang D, Hou L, Yu B, Lin L, Deng L, Huang H, He J*. Facile synthesis and excellent microwave absorption properties of FeCo-C core–shell nanoparticles. Nanotechnology, 2018, 29(8): 085604. https://doi.org/10.1088/1361-6528/aaa52f

[50] Kuang D, Hou L*, Wang S*, Yu B, Deng L, Lin L, Huang H, He J, Song M*. Enhanced electromagnetic wave absorption of Ni–C core-shell nanoparticles by HCP-Ni phase. Mater Res Express, 2018, 5(9): 095013. https://doi.org/10.1088/2053-1591/aad661 

[51] Wang S, Shan Z, Huang H*. The Mechanical Properties of Nanowires. Adv Sci, 2017, 4(4): 1600332. http://dx.doi.org/10.1002/advs.201600332

[52] Xie H, Mead J, Wang S*, Huang H*. The effect of surface texture on the kinetic friction of a nanowire on a substrate. Sci Rep, 2017, 7: 44907. http://dx.doi.org/10.1038/srep44907 

[53] Roy A, Mead J, Wang S*, Huang H*. Effects of surface defects on the mechanical properties of ZnO nanowires. Sci Rep, 2017, 7(1): 9547. http://dx.doi.org/10.1038/s41598-017-09843-5

[54] Kuang D, Hou L, Yu B, Liang B, Deng L, Huang H, Ma S*, He J*, Wang S*. Gram-scale synthesis, thermal stability, magnetic properties, and microwave absorption application of extremely small Co–C core–shell nanoparticles. Mater Res Express, 2017, 4(7): 075044. https://doi.org/10.1088/2053-1591/aa7ad3 

[55] Yu B, Zhang Q, Hou L, Wang S*, Song M*, He Y, Huang H, Zou J. Temperature-dependent chemical state of the nickel catalyst for the growth of carbon nanofibers. Carbon, 2016, 96: 904-910. http://dx.doi.org/10.1016/j.carbon.2015.10.048  

[56] Roy A, Xie H, Wang S*, Huang H*. The kinetic friction of ZnO nanowires on amorphous SiO2 and SiN substrates. Appl Surf Sci, 2016, 389: 797-801. http://dx.doi.org/10.1016/j.apsusc.2016.07.172 

[57] Xie H, Wang S*, Huang H*. Characterising the nanoscale kinetic friction using force-equilibrium and energy-conservation models with optical manipulation. Nanotechnology, 2016, 27(6): 065709. https://doi.org/10.1088/0957-4484/27/6/065709 

[58] Wang S, Huang Q, Wu Y, Huang H*. Unique structure and surface-related elastic modulus of alumina nanobelts. Nanotechnology, 2016, 27(47): 475701. https://doi.org/10.1088/0957-4484/27/47/475701

[59] Huang Q, Wang S*, Zhang Y, Yu B, Hou L, Su G, Ma S, Zou J, Huang H. Hollow Carbon Nanospheres with Extremely Small Size as Anode Material in Lithium-Ion Batteries with Outstanding Cycling Stability. J Phys Chem C, 2016, 120(6): 3139-3144. http://dx.doi.org/10.1021/acs.jpcc.5b10455 

[60] Wang S, Wu Y, Lin L, He Y, Huang H*. Fracture Strain of SiC Nanowires and Direct Evidence of Electron-Beam Induced Amorphisation in the Strained Nanowires. Small, 2015, 11(14): 1672–1676. http://dx.doi.org/10.1002/smll.201402202 

[61] Wang S, Hou L, Xie H, Huang H*. The kinetic friction between a nanowire and a flat substrate measured using nanomanipulation with optical microscopy. Appl Phys Lett, 2015, 107(10): 103102. http://dx.doi.org/10.1063/1.4930576 

[62] Xie H, Wang S*, Huang H*. Kinetic and static friction between alumina nanowires and a Si substrate characterized using a bending manipulation method. Journal of Materials Research 2015, 30(11): 1852-1860. http://dx.doi.org/10.1557/jmr.2015.129 

[63] Liu J, Yu B, Zhang Q, Hou L, Huang Q, Song C, Wang S*, Wu Y, He Y, Zou J, Huang H. Synthesis and magnetic properties of Fe3C-C core-shell nanoparticles. Nanotechnology, 2015, 26(8): 085601. https://doi.org/10.1088/0957-4484/26/8/085601 

[64] Hou L, Wang S*, Huang H*. A simple criterion for determining the static friction force between nanowires and flat substrates using the most-bent-state method. Nanotechnology, 2015, 26(16): 165702. https://doi.org/10.1088/0957-4484/26/16/165702   

[65] Wang S, Huang X, He Y*, Huang H, Wu Y, Hou L, Liu X, Yang T, Zou J, Huang B. Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene. Carbon, 2012, 50(6): 2119-2125. http://dx.doi.org/10.1016/j.carbon.2011.12.063 

[66] Wang S, He Y*, Fang X*, Zou J*, Wang Y, Huang H, Costa P M F J, Song M, Huang B, Liu C T, Liaw P K, Bando Y, Golberg D. Structure and field-emission properties of sub-micrometer-sized tungsten-whisker arrays fabricated by vapor deposition. Adv Mater, 2009, 21(23): 2387-2392. https://doi.org/10.1002/adma.200803401 

  • Professor
    Supervisor of Doctorate Candidates
  • School/Department:School of Physics
  • Contact Information:shiliang@mail.csu.edu.cn shiliang.wang@uq.edu.au
  • Degree:Doctoral degree
  • Alma Mater:中南大学
  • Honors and Titles:
  • 2011年度湖南省自然科学优秀论文一等奖; 2009年度湖南省普通高校青年骨干教师培养对象; 2010年度湖南省优秀博士学位论文; 2010年度全国优秀博士学位论文提名奖;
    • Postal Address:
    • Email:
    Central South University  All rights reserved  湘ICP备05005659号-1 Click:
      MOBILE Version

    The Last Update Time:..