- [1]Ruisheng Qi, Xiaojie Wang, Error estimates of semi-discrete and fully discrete finite element methods for the Cahn-Hilliard-Cook equation[J].SIAM Journal on Numerical Analysis, 2020, 58 (3) : 1613--1653.
- [2]Rikard Anton, David Cohen, Stig Larsson, Xiaojie Wang.Full discretisation of semi-linear stochastic wave equations driven by multiplicative noise[J].SIAM Journal on Numerical Analysis, 2016, 54 (2) : 1093-1119.
- [3]Martin Hutzenthaler, Arnulf Jentzen, Xiaojie Wang.Exponential integrability properties of numerical approximation processes for nonlinear stochastic differential equations[J].Mathematics of Computation, 2018, 87 (311) : 1353-1413.
- [4]A strong order 1.5 boundary preserving discretization scheme for scalar SDEs defined in a domain.Mathematics of Computation, 2024
- [5]Xiaojie Wang, Siqing Gan, Jingtian Tang..Higher order strong approximations of semilinear stochastic wave equation with additive space-time white noise[J].SIAM Journal on Scientific Computing, 2014, 36 (6) : A2611-A2632.
- [6]Perturbation estimates for order-one strong approximations of SDEs without globally monotone coefficients.IMA Journal of Numerical Analysis, 2025
- [7]On modified Euler methods for McKean-Vlasov stochastic differential equations with super-linear coefficients.Automatica, 2025
- [8]Projected Langevin Monte Carlo algorithms in non-convex and super-linear setting.Journal of Computational Physics, 2025
- [9]Antithetic multilevel Monte Carlo method for approximations of SDEs with non-globally Lipschitz continuous coefficients.Stochastic Processes and their Applications, 2024
- [10]A linearly implicit finite element full discretization scheme for SPDEs with non-globally Lipschitz coefficients.IMA Journal of Numerical Analysis, 2024
- [11]Weak error analysis for strong approximation schemes of SDEs with super-linear coefficients.IMA Journal of Numerical Analysis, 2023
- [12]Ruisheng Qi, Xiaojie Wang, Error estimates of finite element method for semi-linear stochastic strongly damped wave equation[J].IMA Journal of Numerical Analysis, 2019, 39 (3) : 1594-1626.
- [13]Xiaojie Wang, Strong convergence rates of the linear implicit Euler method for the finite element discretization of SPDEs with additive noise[J].IMA Journal of Numerical Analysis, 2017, 37 (2) : 965-984.
- [14]Non-asymptotic Error Bounds in W2-Distance with Sqrt(d) Dimension Dependence and First Order Convergence for Langevin Monte Carlo beyond Log-Concavity.International Conference on Machine Learning, 2025
- [15]An efficient explicit full-discrete scheme for strong approximation of stochastic Allen–Cahn equation[J].Stochastic Processes and their Applications, 2020
- [16]Ruisheng Qi, Xiaojie Wang.Optimal error estimates of Galerkin finite element methods for stochastic Allen-Cahn equation with additive noise[J].Journal of Scientific Computing, 2019, 80 (2) : 1171-1194.
- [17]Mean-square convergence rates of implicit Milstein type methods for SDEs with non-Lipschitz coefficients.Advances in Computational Mathematics, 2023
- [18]Xiaojie Wang, Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus[J].Discrete and Continuous Dynamical Systems-Series A, 2016, 36 (1) : 481-497.
- [19]Xiaojie Wang, An exponential integrator scheme for time discretization of nonlinear stochastic wave equation[J].Journal of Scientific Computing, 2015, 64 (1) : 234-263.
- [20]Xiaojie Wang, Siqing Gan, Desheng Wang.A family of fully implicit Milstein methods for stiff stochastic differential equations with multiplicative noise[J].BIT Numerical Mathematics, 2012, 52 (3) : 741-772.
|