Personal Information
温伟斌,男,博士,副教授,博士生导师,中南大学升华学者,湖南省杰青。2014年毕业于重庆大学航空航天学院,获工学博士学位。2015年-2018年在北京大学工学院从事博士后研究工作。主要研究方向包括:轻质复合材料与结构力学、计算力学、结构动力学、结构拓扑优化与应用等。主持国家级/省部级纵向课题或项目11项。包括:国家自然科学基金3项(面上项目2项,青年基金1项);国家jkw基础加强项目3项(领域基金1项,重点项目课题1项,子课题1项);国家工信部民机专项子课题1项;省级课题3项(湖南省杰出青年基金项目1项、青年基金1项,教育厅优秀青年基金1项);国家重点实验室开放基金课题1项。以第一作者或通讯作者在力学或材料领域权威期刊(JMPS, Acta. Mater, CMAME等)发表SCI论文50余篇。其中,高被引论文8篇,论文总他引超过2000次,单篇引用超过200次。入选2024年全球前2%顶尖科学家名单。获授权国家发明专利与软件著作权10余项。相关研究成果已在民用与国防领域应用,获行业单位应用证明多项。 1. 近年的主要纵向项目 (11)国家自然科学基金面上项目,基于准光滑流形元拓扑优化的点阵材料微结构设计及其力学性能研究,(12472144),2025-2028年,52.39万元,在研,主持 (10)JKW基础加强计划173重点项目,XXXXXX结构设计与制造技术, (2024-JCJQ-XXXXXX),2024-2027年, 225.0万元,在研,主持(课题) (9)JKW基础加强计划173重点项目, XXXXXX效能评估,(2023-JCJQ-XXXXXX),2023-2027年, 200.0万元,在研,主持(子课题) (8)湖南省杰出青年基金项目,轻质多功能复合材料力学设计与应用,(2024JJ2067),2024-2027年,50.0万元,在研,主持 (7)JKW基础加强计划173领域基金项目, XXXXXX的高效计算分析方法,(2022-JCJJ-XXXXXX),2022-2024年, 80.0万元,已结题,主持 (6)国家自然科学基金面上项目, 新型轻质曲面点阵材料微结构设计及其力学特性研究, (12072375), 2021-2024年, 62.0万元, 在研, 主持; (5)湖南省教育厅优秀青年基金项目, 轻质多孔点阵材料的新型拓扑优化力学设计及其性能表征, (22B0002), 2022-2024年, 6.0万元, 在研, 主持; (4)湖南省自然科学基金青年项目, 新型轻质平板点阵材料设计及其力学性能表征, (2021JJ40710), 2021-2023年, 5.0万元, 已结题, 主持; (3)国家自然科学基金青年基金项目, 面向多孔点阵材料与结构动力学特性分析的等几何流形元法研究, (11602004), 2017-2019年, 28.0万元, 已结题,主持; (2)工信部民机专项重点科研项目子课题,XXXXXX轻量化增材制造技术,(MJZ-2016-XXXXXX,) 2016-2019年,123.0万元,已结题,主持(子课题); (1)工业装备结构分析国家重点实验室开放基金项目,新型多层级点阵夹层结构优化设计与力学性能研究,(GZ15114),2015-2017年,15.0万元,已结题,主持; 2. 主要代表性论文(*为通讯作者标注) (https://orcid.org/0000-0001-7906-678X )
2025年 [1] M. Lei, P. Wang, Y. Hong, W. Wen*, S. Duan, J. Liang, Additively-manufactured node-reinforced plate lattices with superior energy absorption, Mechanics of Advanced Materials and Structures (2025) 1-14. (Q1) #26 [2] X. Meng, W. Wen, F. Feng, J. Liao, S. Zhang, L. Li, F. Huang, Mechanical properties and damage characteristics of modified polyurethane concrete under uniaxial and cyclic compression, Construction and Building Materials 458 (2025) 139633. 2024年 [1] S. Deng, S. Duan, P. Wang, W. Wen*, A novel numerical manifold method and its application in parameterized LSM-based structural topology optimization, Computer Methods in Applied Mechanics and Engineering 418 (2024) 116457. (Q1, 前5%)#25 [2] S. Deng, P. Wang, W. Wen*, J. Liang, A novel quasi-smooth tetrahedral numerical manifold method and its application in topology optimization based on parameterized level-set method, Computer Methods in Applied Mechanics and Engineering 425 (2024) 116948. (Q1, 前5%) #24 [3] M. Lei, P. Wang, S. Duan*, W. Wen*, J. Liang*, An emerging shellwich lattice material: Unlocking design freedom and enhancing mechanical properties, Composites Part A: Applied Science and Manufacturing 185 (2024) 108316. (Q1, 前5%) [4] M. Lei, P. Wang, S. Duan, W. Wen, J. Liang, Novel conformal sandwich lattice structures: Design concept, fabrication and mechanical properties, Thin-Walled Structures 199 (2024) 111806.(Q1) [5] T. Liu, P. Wang, W. Wen*, F. Feng, Improved explicit quartic B-spline time integration scheme for dynamic response analysis of viscoelastic systems, Mechanical Systems and Signal Processing 208 (2024) 110982. (Q1, 前5%) #23 [6] T. Liu, W. Wen*, P. Wang, F. Feng, A time-marching procedure based on a sub-step explicit time integration scheme for non-viscous damping systems, Engineering with Computers 40(2) (2024) 1005-1025. (Q1, 前5%) #22 [7] P. Wang, X. Han, W. Wen*, B. Wang, J. Liang, Galerkin-based quasi-smooth manifold element (QSME) method for anisotropic heat conduction problems in composites with complex geometry, Applied Mathematics and Mechanics 45(1) (2024) 137-154. (Q1, 前1%) #21 2023年 [1] W. Wen, L. Wu, T. Liu, S. Deng, S. Duan, A novel three sub‐step explicit time integration method for wave propagation and dynamic problems, International Journal for Numerical Methods in Engineering 124(15) (2023) 3299-3328.(Q1) #20 [2] Y. Han, X. Meng, F. Feng, X. Song, F. Huang, W. Wen, Study on Temperature-Dependent Uniaxial Tensile Tests and Constitutive Relationship of Modified Polyurethane Concrete, Materials 16(7)(2023) 2653. [3] T. Liu, P. Wang, W. Wen*, A novel single-step explicit time integration method based on momentum corrector technique for structural dynamic analysis, Applied Mathematical Modelling 124 (2023) 1-23. (Q1) #19 [4] T. Liu, P. Wang, W. Wen*, An improved time-marching formulation based on an explicit time integration method for dynamic analysis of non-viscous damping systems, Mechanical Systems and Signal Processing 191 (2023) 110195. (Q1, 前5%) #18 [5] T. Liu, P. Wang, W. Wen*, F. Feng, Improved composite implicit time integration method for dynamic analysis of viscoelastic damping systems, Communications in Nonlinear Science and Numerical Simulation 124 (2023) 107301. (Q1, 前5%) #17 [6] T. Liu, P. Wang, W. Wen*, F. Feng, Formulation and Analysis of a Cubic B-Spline-Based Time Integration Procedure for Structural Seismic Response Analysis, International Journal of Structural Stability and Dynamics 23(19) (2023) 2350180. (Q1) #16 [7] W. Wen, M. Lei, P. Wang, T. Liu, S. Duan, An efficient hybrid implicit time integration method with high accuracy for linear and nonlinear dynamics, European Journal of Mechanics - A/Solids 97 (2023) 104811.(Q1) #15 [8] 朱赫,黄方林,张爱品,冯帆,温伟斌*,不同温度下改性聚氨酯混凝土单轴拉伸试验及本构关系, 复合材料学报 40(08) (2023) 4659-4669.(EI) #14 [9] 黄方林,孟宪冬,冯帆,高英杰,温伟斌*, 预制桥面板方台形剪力键湿接缝受力性能分析, 铁道科学与工程学报 20(6) (2023)2151-2164.(EI) #13 2022年 [1] W. Wen, T. Liu, S. Duan, A novel sub-step explicit time integration method based on cubic B-spline interpolation for linear and nonlinear dynamics, Computers & Mathematics with Applications 127 (2022) 154-180. (Q1)#12 [2] W. Wen, H. Li, T. Liu, S. Deng, S. Duan, A novel hybrid sub-step explicit time integration method with cubic B-spline interpolation and momentum corrector technique for linear and nonlinear dynamics, Nonlinear Dynamics 110(3) (2022) 2685-2714. (Q1, 前5%) #11 [3] W. Wen, M. Lei, Y. Tao, Y. Lian, Out-of-plane crashworthiness of bio-inspired hierarchical diamond honeycombs with variable cell wall thickness, Thin-Walled Structures 176 (2022) 109(Q1) #10 [4] W. Wen, M. Lei, Y. Tao, The effect of material distribution on the out-of-plane elastic properties of hierarchical diamond honeycombs, Engineering Structures 272 (2022) 115000. (Q1) #9 [5] W. Wen, S. Deng, T. Liu, S. Duan, F. Huang, An improved quartic B-spline based explicit time integration algorithm for structural dynamics, European Journal of Mechanics - A/Solids 91 (2022) 104407.(Q1) #8 [6] T. Liu, W. Wen*, An improved explicit time-marching procedure with b-spline interpolation and weighted residual technique for structural seismic response analysis, Engineering Structures 272 (2022) 115006. (Q1) #7 2021年 [1] J. Zhang, L. Shi, T. Liu, D. Zhou, W. Wen, Performance of a Three-Substep Time Integration Method on Structural Nonlinear Seismic Analysis, Mathematical Problems in Engineering 2021(1) (2021) 6442260. [2] W.B. Wen, S.Y. Deng, T.H. Liu, S.Y. Duan, W.Q. Hou, X.D. Xia, An Improved Sub-Step Composite Time Integration Formulation With Enhanced Performance on Linear and Nonlinear Dynamics, International Journal of Applied Mechanics 13(02) (2021) 2150017. (Q2) #6 [3] W. Wen, S. Deng, N. Wang, S. Duan, D. Fang, An improved sub-step time-marching procedure for linear and nonlinear dynamics with high-order accuracy and high-efficient energy conservation, Applied Mathematical Modelling 90 (2021) 78-100. (Q1) #5 [4] W. Wen, S. Deng, S. Duan, D. Fang, A high-order accurate explicit time integration method based on cubic b-spline interpolation and weighted residual technique for structural dynamics, International Journal for Numerical Methods in Engineering 122(2) (2021) 431-454. (Q1) #4 [5] T. Liu, F. Huang, W. Wen*, X. He**, S. Duan, D. Fang, Further insights of a composite implicit time integration scheme and its performance on linear seismic response analysis, Engineering Structures 241 (2021) 112490. (Q1) #3 [6] T. Liu, F. Huang, W. Wen*, S. Deng, S. Duan, D. Fang, An improved higher-order explicit time integration method with momentum corrector for linear and nonlinear dynamics, Applied Mathematical Modelling 98 (2021) 287-308. (Q1)#2 [7] F. Feng, F. Huang, D. Zhou, W. Wen, Y. Tao, Study on the Shear Capacity of the Wet Joint of the Prefabricated Bridge Panel with a Special-Shaped Shear Key, Advances in Civil Engineering 2021(1) (2021) 5783563. [8] F. Feng, F. Huang, W. Wen, Z. Liu, X. Liu, Evaluating the Dynamic Response of the Bridge-Vehicle System considering Random Road Roughness Based on the Moment Method, Advances in Civil Engineering 2021(1) (2021) 9923592. [9] F. Feng, F. Huang, W. Wen, P. Ge, Y. Tao, Enhanced Ultimate Shear Capacity of Concave Square Frustum-Shaped Wet Joint in Precast Steel–Concrete Composite Bridges, Applied Sciences 11(4) (2021) 1915. 2020年 [1] X. Xia, G.J. Weng, J. Xiao, W. Wen*, Porosity-dependent percolation threshold and frequency-dependent electrical properties for highly aligned graphene-polymer nanocomposite foams, Materials Today Communications 22 (2020) 100853. [2] L. Xi, W. Wen, W. Wu, Z. Qu, R. Tao, A. Karunaratne, B. Liao, Y. Li, D. Fang, Mechanical response of cortical bone in compression and tension at the mineralized fibrillar level in steroid induced osteoporosis, Composites Part B: Engineering 196 (2020) 108138. [3] S. Duan, L. Xi, W. Wen*, D. Fang, A novel design method for 3D positive and negative Poisson's ratio material based on tension-twist coupling effects, Composite Structures 236 (2020) 111899. (Q1,前5%) [4] S. Duan, L. Xi, W. Wen*, D. Fang, Mechanical performance of topology-optimized 3D lattice materials manufactured via selective laser sintering, Composite Structures 238 (2020) 111985. (Q1,前5%) [5] S. Duan, W. Wen*, D. Fang, Additively-manufactured anisotropic and isotropic 3D plate-lattice materials for enhanced mechanical performance: Simulations & experiments, Acta Materialia 199 (2020) 397-412. (Q1,前5%) [6] X. Cao, D. Xiao, Y. Li, W. Wen*, T. Zhao, Z. Chen, Y. Jiang, D. Fang, Dynamic compressive behavior of a modified additively manufactured rhombic dodecahedron 316L stainless steel lattice structure, Thin-Walled Structures 148 (2020) 106586. (Q1) 2019年 [1] X. Xia, G.J. Weng, D. Hou, W. Wen*, Tailoring the frequency-dependent electrical conductivity and dielectric permittivity of CNT-polymer nanocomposites with nanosized particles, International Journal of Engineering Science 142 (2019) 1-19. (Q1) [2] Y. Tao, W. Li, K. Wei, S. Duan, W. Wen*, L. Chen, Y. Pei, D. Fang, Mechanical properties and energy absorption of 3D printed square hierarchical honeycombs under in-plane axial compression, Composites Part B: Engineering 176 (2019) 107219. (Q1) [3] Z. Dong, Y. Liu, W. Wen, J. Ge, J. Liang, Effect of Hatch Spacing on Melt Pool and As-built Quality During Selective Laser Melting of Stainless Steel: Modeling and Experimental Approaches, Materials 12(1) (2019). 2018年 [1] W. Wen, S. Luo, S. Duan, J. Liang, D. Fang, Improved quadratic isogeometric element simulation of one-dimensional elastic wave propagation with central difference method, Applied Mathematics and Mechanics-English Edition 39(5) (2018) 703-716. (Q1) #1 [2] W. Wen, S. Duan, K. Wei, Y. Ma, D. Fang, A quadratic b-spline based isogeometric analysis of transient wave propagation problems with implicit time integration method, Applied Mathematical Modelling 59 (2018) 115-131.(Q1) [3] K. Wei, Y. Peng, K. Wang, S. Duan, X. Yang, W. Wen*, Three dimensional lightweight lattice structures with large positive, zero and negative thermal expansion, Composite Structures 188 (2018) 287-296.(Q1) [4] H. Li, Y. Chen, P. Wang, B. Xu, Y. Ma, W. Wen, Y. Yang, D. Fang, Porous carbon-bonded carbon fiber composites impregnated with SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> aerogel with enhanced thermal insulation and mechanical properties, Ceramics International 44(3) (2018) 3484-3487. [5] S. Duan, W. Wen*, D. Fang, A predictive micropolar continuum model for a novel three-dimensional chiral lattice with size effect and tension-twist coupling behavior, Journal of the Mechanics and Physics of Solids 121 (2018) 23-46. (Q1) [6] S. Duan, Y. Tao, H. Lei, W. Wen*, J. Liang, D. Fang, Enhanced out-of-plane compressive strength and energy absorption of 3D printed square and hexagonal honeycombs with variable-thickness cell edges, Extreme Mechanics Letters 18 (2018) 9-18. (Q1) [7] X. Cao, S. Duan, J. Liang, W. Wen*, D. Fang, Mechanical properties of an improved 3D-printed rhombic dodecahedron stainless steel lattice structure of variable cross section, International Journal of Mechanical Sciences 145 (2018) 53-63. (Q1) 3. 主要授权发明专利与软著 国家发明专利 [9] 温伟斌等,一种桥墩防撞装置,2024-04-02 Patent Number: CN115387209B. [8] 段晟昱, 温伟斌等,三维光滑曲面点阵胞元及设计方法、点阵结构、零件,2024-09-13 Patent Number: CN114329775B [7] 温伟斌等,吸能部件及防撞装置,2023-07-25 Patent Number: CN114645524B [6] 温伟斌等,一种工程结构振动响应的时域分析方法和系统,2022-06-28 Patent Number: CN112199799B [5] 温伟斌等,一种工程结构在极端荷载下动态响应的复合时域分析方法,2022-11-01 Patent Number: CN113792461B [4] 温伟斌等,一种肋板骨架混凝土现浇板, 2021-05-11 Patent Number: CN112160479B [3] 温伟斌等,剪力键模具的制作方法及桥面板铺装结构,2021-12-07 Patent Number: CN111622105B [2] 温伟斌等,一种具有点阵结构的零件、点阵结构及点阵胞元,2021-02-02 Patent Number: CN110985872B [1] 冯帆, 黄方林, 温伟斌等,一种预制钢筋混凝土组合桥面板及湿接缝结构,2020-05-12 Patent Number: CN110241726B 软件著作权 [5] 周德,雷鸣,温伟斌,新型蜂窝材料参数化建模与抗冲击分析软件V1.0, 2023SR1814484, 2023-09-01. [4] 周德,雷鸣,温伟斌,新型多级梯度方形蜂窝材料参数化建模与抗冲击分析软件,2023SR1685791, 2023-10-01. [3] 温伟斌等,新型蜂窝结构抗冲击分析参数化建模程序软件V1.0. 软件著作权,2021SR1295985, 2021-07-01. [2] 段晟昱, 温伟斌,三维点阵结构非线性力学分析软件V1.0. 软件著作权,2021SR0177812, 2019-10-15. [1] 温伟斌等,三维点阵填充结构轻量化系统V1.0. 软件著作权,2020SR1211657, 2019-10-15. 4. 主要学术任职与兼职 [1] 中国复合材料学会青年工作委员会委员,2024-2027 [2] 中国复合材料学会编织复合材料分会委员,2024-2027 [3] 湖南省力学学会理事,2021-2026 [4] 国家自然科学基金通讯评审专家 [5] 多省的自然科学基金通讯评审专家 [6] 教育部学位论文评审专家 [7] JMPS, CMAME, Acta. Mater等期刊的论文评审专家
5. 学生培养 博士生
硕士生
本科生
招生需求
|