- [21]X.Chen, S.Xiang, Newton Iterations in Implicit Time-Stepping Scheme for Differential Linear Complementarity Systems.Math. Program. Ser. A, 2013, 138: 579-606.
- [22]X.Chen, S.Xiang, Implicit Solution Function of P$_0$ and Z Matrix Linear Complementarity constraints.Math. Program. Ser. A, 2010, 128(1-2): 1-18.
- [23]X.Chen, S.Xiang, Computation of error bounds for P-matrix linear complementarity problems, Math. Program.Math. Program. Ser. A, 2006, 106: 513-525.
- [24]S.Xiang, Y.Cho, H.Wang, H.Brunner, Clenshaw-Curtis-Filon-type methods for highly oscillatory Bessel transforms and applications.IMA J. Numer. Anal., 2011, 31(4): 1281-1314.
- [25]H.Wang, S.Xiang, Asymptotic expansion and Filon-type methods for a Volterra integral equation with a highly oscillatory kernel.IMA J. Numer. Anal., 2011, 31(2): 469-490.
- [26]S.Xiang, 一些高振荡积分、高振荡积分方程的高性能计算.中国科学:数学, 2012, 42(7): 651-670.
- [27]李松华, 冼军, 向淑晃, 高频散射问题的高效配置法.中国科学:数学, 2017, 47: 651-666.
- [28]Y.Wang, S.Xiang, Levin methods for highly oscillatory integrals with singularities.SCIENCE CHINA: Mathematics, 2020
- [29]H.Zhou, B.Guo, S.Xiang, Performance Output Tracking for Multidimensional Heat Equation Subject to Unmatched Disturbance and Noncollocated Control.IEEE Tran. Auto. Cont., 2020, 65: 1940-1955.
- [30]S.Xiang, G.He, Y.Cho, On error bounds of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals.Adv. Comput. Math., 2015, 41: 573–597.
- [31]S.Xiang, Numerical analysis on fast integration of highly oscillatory functions.BIT Numer. Math., 2007, 47(2): 469-482.
- [32]S.Xiang, H.Brunner, Efficient Methods for Volterra Integral Equations with Highly Oscillatory Bessel Kernels.BIT Numer. Math., 2013, 52: 241-263.
- [33]J.Ma, S.Xiang, A Collocation Boundary Value Method for Linear Volterra Integral Equations.J. Sci. Comput., 2017, 71(1): 1-20.
- [34]C.Wei, etc., Implosion of the Argentinian submarine ARA San Juan S-42 undersea: Modeling and simulation.Commun. Nonliear Sci Numer. Similat., 2020
- [35]Y.Tian, S.Xiang, G.Liu, Fast computation of the spectral differentiation by the fast multipole method.Comput. Math. Appl., 2019, 78(1): 240-253.
- [36]C.Fang, G.He, S.Xiang, Hermite-Type Collocation Methods to Solve Volterra Integral Equations with Highly Oscillatory Bessel Kernels.Symmetric—BASEL, 2019, 11(2): 168.
- [37]R.Chen, S.Xiang, X.Kuang, On evaluation of oscillatory transforms from position to momentum space.Appl. Math. Comput., 2019, 344: 183-190.
- [38]Q.Zhang, S.Xiang, On fast multipole methods for Volterra integral equations with highly oscillatory kernels.J. Comput. Appl. Math., 2019, 348: 535-554.
- [39]S.Xiang, X.Chen, Y.Zhou, Least-Element Time-Stepping Methods for Simulation of Linear Networks with Ideal Switches.Circuits Systems Signal Proc., 2019, 38(4): 1432-1451.
- [40]G.Liu, S.Xiang, Clenshaw-Curtis-type quadrature rule for hypersingular integrals with highly oscillatory kernels.Appl. Math. Comput., 2019, 340: 251-267.