- [41]Y.Tian, S.Xiang, On convergence rates of prolate interpolation and differentiation.Appl. Math. Lett., 2019, 94: 250-256.
- [42]S.Xiang, On van der Corput-type lemmas for Bessel and Airy transforms and applications.J. Comput. Appl. Math., 2019, 351: 179-185.
- [43]B.Li, S.Xiang, On fast multipole methods for Fredholm integral equations of the second kind with singular and highly oscillatory kernels.Int. J. Comput. Math., 2019, online: 1-27.
- [44]B.Li, S.Xiang, G.Liu, Laplace transforms for evaluation of Volterra integral equation of the first kind with highly oscillatory kernel.Comput. Appl. Math., 2019, 38 (3): 116.
- [45]S.Xiang, B.Li, G.Liu, On efficient computation of highly oscillatory retarded potential integral equations.Int.l J. Comput. Math., 2018, 95: 2240-2255.
- [46]S.Xiang, G.Liu, On optimal convergence rates of a two-dimensional fast multipole method.Appl. Math. Lett., 2018, 76: 74-80.
- [47]S.Xiang, On the optimal convergence rates of Chebyshev interpolations for functions of limited regularity.Appl. Math. Lett., 2018, 84: 1-7.
- [48]G.Liu, S.Xiang, Fast multipole methods for approximating a function from sampling values.Numer. Alg., 2017, 76: 727-743.
- [49]S.Li, S.Xiang, A Fast Hybrid Galerkin Method for High-Frequency Acoustic Scattering.Applicable Analysis, 2017, 96: 1698-1712.
- [50]Z.Xu, S.Xiang, Gauss-type quadrature for highly oscillatory integrals with algebraic singularities and applications.International Journal of Computer Mathematics, 2017, 94: 1123-1137.
- [51]Z.Xu, S.Xiang, On the evaluation of highly oscillatory finite Hankel Transform using special functions.Numer. Alg., 2016, 72: 37–56.
- [52]Z.Xu, S.Xiang, G.He, A Chebyshev collocation method for a class of Fredholm integral equations with highly oscillatory kernels.J.Comput. Appl. Math., 2016, 300: 354–368.
- [53]S.Xiang, C.Fang, Z.Xu, On uniform approximations to hypersingular finite-part integrals.J. Math. Anal. Appl., 2016, 435(2): 1210-1228.
- [54]G.He, S.Xiang, E.Zhu, Efficient computation of highly oscillatory integrals with weak singularities by Gauss-type method.Int. J. Computer Math., 2016, 93(1): 83-107.
- [55]Q.Wu, S.Xiang, Fast multipole method for singular integral equations of second kind.Advances in Difference Equations, 2015: 191.
- [56]Z.Xu, G.V.Milovanovic, S.Xiang, Efficient computation of highly oscillatory integrals with Hankel kernel.Appl. Math. Comput., 2015, 261: 312-322.
- [57]J.Ma, C.Fang, S.Xiang, Modified asymptotic orders of the direct Filon method for a class of Volterra integral equations.J. Comput. Appl. Math., 2015, 281: 120-125.
- [58]G.He, S.Xiang, An improved algorithm for the evaluation of Cauchy principal value of oscillatory functions and its application.J. Comput. Appl. Math., 2015, 280: 1-13.
- [59]S.Xiang, Laplace transforms for approximation of highly oscillatory Volterra integral equations of the first kind.Appl. Math. Comput., 2014, 232: 944-954.
- [60]Z.Xu, S.Xiang, Numerical evaluation of a class of highly oscillatory integrals involving Airy.Appl. Math.Comput., 2014, 246: 54-63.