Xiaodong Xia, male, associate professor in Central South University, Alexander von Humboldt research fellow. In Mar. 2018, he obtained his Ph.D. degree in solid mechanics in Tongji University under the supervision of Prof. Zheng Zhong. He also visited the Rutgers University from Oct. 2015 to Oct. 2017 under the supervision of Prof. George J. Weng. His main interest lies in “Multi-field coupled behaviors of graphene-based and CNT-based nanocomposites”. Till now, he has published more than 50 papers in high-quality journals, including International Journal of Plasticity, Composites Science and Technology, Carbon, International Journal of Engineering Science, Mechanics of Materials, Materials & Design, etc.【Homepages】[1] https://www.researchgate.net/profile/Xiaodong-Xia-4[2] https://scholar.google.com/citations?user=7UQlBXAAAAAJ&hl=en 【Publications】2024:[61] Xiao, J., Lv, J., Xia, X., & Wang, J. (2024). Flexoelectric and surface effects on bending deformation and vibration of piezoelectric nanolaminates: Analytical solutions. Applied Mathematical Modelling, 135, 541-558.[60] Wang, J., Xiao, J., & Xia, X. (2024). Buckling and post-buckling behavior of nano-laminates considering surface effects. Archive of Applied Mechanics, 1-20.[59] Xia, X., & Weng, G. J. (2024). Some fundamental electrical properties of highly aligned graphene nanocomposites and lightweight foams. In Nanomechanics of Structures and Materials (pp. 21-61). Elsevier.[58] Li, P., Zhang, J., Gao, Y., Xia, X., & Weng, G. J. (2024). Effect of magnetic field on macroscopic hysteresis and microscopic magnetic domains for different ferromagnetic materials. Journal of Materials Research and Technology, 31, 458-471.[57] Xia, X., Liu, Y., Zhang, J., Luo, J., & Weng, G. J. (2024). Tailoring electromagnetic interference shielding effectiveness of SiO2-decorated MWCNT/polymer nanocomposites. Mechanics of Materials, 191, 104949.[56] Xia, X., Zhao, S, Zhang, J., Fang, C., & Weng, G. J. (2024). Revealing the time-dependent electromechanically coupled performances of viscoelastic MWCNT/polyethylene nanocomposite stress sensors. Composites Science and Technology, 247, 110417.2023:[55] Xia, X., Niekamp, R., Brands, D., & Schröder, J. (2023). A hybrid computational scheme on electromechanically coupled behaviors of aligned MWCNT/polymer nanocomposite sensors with strain-dependent tunneling effect. Archive of Applied Mechanics, 93, 4305-4325.[54] Zan, X. D., Guo, X., Xia, X., Weng, G. J., Chen, G., & Han, F. Z. (2023). Anisotropic deformation mechanisms of rolling-textured Zircaloy-4 alloy by a crystal plasticity model. Computational Materials Science, 229, 112424.[53] Xia, X., Liu, Y., Pan, Y., & Zhong, Z. (2023). Multi-objective optimal design of high-efficient EMI shielding in porous graphene-reinforced nanocomposites. International Journal of Mechanics and Materials in Design, 19: 669-685.[52] Xia, X., Liu, Y., Pan, Y., & Zhong, Z. (2023). Multi-objective optimal design of high-efficient EMI shielding in porous graphene-reinforced nanocomposites. International Journal of Mechanics and Materials in Design, 1-17. https://doi.org/10.1007/s10999-023-09643-y.[51] Du H., Mazzeo A. D., Shan J. W., Xia X., Weng G. J. (2023). Electrical response, elastic property, and pressure sensing under bending of hybrid graphene/CNT/elastomer nanocomposites. Composite Structures, accepted.[50] Meguid, S. A., Xia, X., & Elaskalany, M. (2023). Unravelling the sensory capability of MWCNT-reinforced nanocomposites: Experimental and numerical investigations. Carbon, 204, 147-161.[49] Sheng, Y., Li, C., Wang, J., Xia, X., Weng, G. J., & Su, Y. (2023). Multiscale modeling of thermal conductivity of hierarchical CNT-polymer nanocomposite system with progressive agglomeration. Carbon, 201, 785-795.[48] Fang, C., Chen, X., Zhang, J., Xia, X., & Weng, G. J. (2023). Study of electromagnetic interference shielding effectiveness of multilayer graphene films by Monte Carlo method. Journal of Physics D: Applied Physics, 56, 045301.2022:[47] Chen, M., Pan, L., Xia, X., Zhou, W., & Li, Y. (2022). Boron nitride (BN) and BN based multiple-layer interphase for SiCf/SiC composites: A review. Ceramics International, 48, 34107-34127.[46] Xia, X., Zhao, S., Zhang, J., Fang, C., & Weng, G. J. (2022). A unified investigation into the tensile and compressive sensing performance in highly sensitive MWCNT/epoxy nanocomposite strain sensor through loading-dependent tunneling distance. Composites Science and Technology, 230, 109723.[45] Xia, X., Du, Z., Su, Y., Li, J., & Weng, G. J. (2022). Dual thermodynamics approach to the temperature dependence of viscoplastic creep durability in graphene-based nanocomposites. International Journal of Plasticity, 157, 103400.[44] Xia, X., Du, Z., Zhang, J., Song, D., & Weng, G. J. (2022). The influence of ambient temperature and X-band frequency on EMI shielding performance of graphene/silica nanocomposites. Mechanics of Materials, 173, 104419.[43] Zhang, J., Wang, X., Chen, X., Xia, X., & Weng, G. J. (2022). Piezoelectricity enhancement in graphene/polyvinylidene fluoride composites due to graphene-induced α→ β crystal phase transition. Energy Conversion and Management, 269, 116121.[42] Zhang, Q., Xia, X., Chen, P., Xiao, P., Zhou, W., & Li, Y. (2022). Current research art of rare earth compound modified SiC-CMCs for enhanced wet-oxygen corrosion resistance. Ceramics International, 48, 24131-24143. [41] Li, J., Chen, T., Chen, T., Yun, Z., & Xia, X. (2022). Computational modelling of frictional deformation of bimodal nanograined metals. International Journal of Mechanical Sciences, 222, 107220.[40] Xia, X., Zhao, S., Yin, H., & Weng, G. J. (2022). Revealing the AC electromechanically coupled effects and stable sensitivity on the dielectric loss in CNT-based nanocomposite sensors. Materials & Design, 216, 110557.[39] Xia, X., Zhao, S., Wang, J., Du, H., & Weng, G. J. (2022). Tuning the AC electric responses of decorated PDA@MWCNT/PVDF nanocomposites. Composites Science and Technology, 222, 109398.[38] Du, H., Fang, C., Zhang, J., Xia, X., & Weng, G. J. (2022). Segregated carbon nanotube networks in CNT-polymer nanocomposites for higher electrical conductivity and dielectric permittivity, and lower percolation threshold. International Journal of Engineering Science, 173, 103650.[37] Su, M., Xiao, J., Feng, G., & Xia, X. (2022). Mode-III fracture of a nanoscale cracked hole in one-dimensional hexagonal piezoelectric quasicrystals. International Journal of Mechanics and Materials in Design, 18, 423–433.[36] Xia, X., Guo, X., & Weng, G. J. (2022). Creep rupture in carbon nanotube-based viscoplastic nanocomposites. International Journal of Plasticity, 150, 103189.[35] Xia, X., Du, Z., Zhang, J., Li, J., & Weng, G. J. (2022). Modeling the impact of glass transition on the frequency-dependent complex conductivity of CNT-polymer nanocomposites. Mechanics of Materials, 165, 104195.[34] Xia, X., Zhao, S., Long, L., Li, Y., & Zhou, W. (2022). Multi-scale modeling for frequency-dependent dielectric responses of non-uniform porous carbon fiber/mullite composites. International Journal of Applied Ceramic Technology, 19(1), 22-33.2021:[33] Wang, X., Zhang, J., Xia, X., Fang, C., & Weng, G. J. (2021). Nonlinear magnetoelectric effects of polymer-based hybrid magnetoelectric composites with chain-like terfenol-D/epoxy and PVDF multilayers. Composites Science and Technology, 216, 109069.[32] Wang, X., Zhang, J., Ta, W., Xia, X., & Weng, G. J. (2021). Surface and interface effects on the bending behavior of nonlinear multilayered magnetoelectric nanostructures. Composite Structures, 275, 114485.[31] Fang, C., Chen, X., Zhang, J., Xia, X., & Weng, G. J. (2021). Monte Carlo method with Bézier curves for the complex conductivity of curved CNT-polymer nanocomposites. International Journal of Engineering Science, 168, 103543.[30] Xia, X., Liu, Y., Li, J., & Weng, G. J. (2021). Review and perspective on the calculations of mechanical and functional properties of low-dimensional nanocomposites. Journal of Micromechanics and Molecular Physics, 6(4), 67-87.[29] Xia, X., & Weng, G. J. (2021). Dual percolations of electrical conductivity and electromagnetic interference shielding in progressively agglomerated CNT/polymer nanocomposites. Mathematics and Mechanics of Solids, 26(8), 1120-1137.[28] Xia, X., Du, Z., Zhang, J., Li, J., & Weng, G. J. (2021). A hierarchical scheme from nano to macro scale for the strength and ductility of graphene/metal nanocomposites. International Journal of Engineering Science, 162, 103476.[27] Wen, W. B., Deng, S. Y., Liu, T. H., Duan, S. Y., Hou, W. Q., & Xia, X. (2021). An improved sub-step composite time integration formulation with enhanced performance on linear and nonlinear dynamics. International Journal of Applied Mechanics, 13(02), 2150017.[26] Xia, X., Li, J., Zhang, J., & Weng, G. J. (2021). Uncovering the glass-transition temperature and temperature-dependent storage modulus of graphene-polymer nanocomposites through irreversible thermodynamic processes. International Journal of Engineering Science, 158, 103411.2020:[25] Zhang, J., Du, H., Xia, X., Fang, C., & Weng, G. J. (2020). Theoretical study on self-biased magnetoelectric effect of layered magnetoelectric composites. Mechanics of Materials, 151, 103609.[24] Xia, X., Du, Z., & Weng, G. J. (2020). Predicting temperature-dependent creep and recovery behaviors of agglomerated graphene-polymer nanocomposites with a thermodynamically driven temperature-degraded process. Mechanics of Materials, 150, 103576.[23] Xia, X., Zhao, S., Fang, C., & Weng, G. J. (2020). Modeling the strain‐dependent electrical resistance and strain sensitivity factor of CNT‐polymer nanocomposites. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002/mma.6871[22] Zhang, J., Weng, G. J., Xia, X., & Fang, C. (2020). A theory of frequency dependence and sustained high dielectric constant in functionalized graphene-polymer nanocomposites. Mechanics of Materials, 144, 103352.[21] Xia, X., Xu, B. X., Xiao, X., & Weng, G. J. (2020). Modeling the dielectric breakdown strength and energy storage density of graphite-polymer composites with dielectric damage process. Materials & Design, 189, 108531.[20] Xiao, X., Xiao, C., & Xia, X. (2020). Force-depth relationships with irradiation effect during spherical nano-indentation: A theoretical analysis. Journal of Nuclear Materials, 531, 152012.[19] Xia, X., Li, Y., Long, L., Xiao, P., Luo, H., Pang, L., Xiao X.Z. & Zhou, W. (2020). Modeling for the electromagnetic properties and EMI shielding of Cf/mullite composites in the gigahertz range. Journal of the European Ceramic Society, 40(9), 3423-3430.[18] Xia, X., Weng, G. J., Xiao, J., & Wen, W. (2020). Porosity-dependent percolation threshold and frequency-dependent electrical properties for highly aligned graphene-polymer nanocomposite foams. Materials Today Communications, 22, 100853.[17] Xia, X., Weng, G. J., Zhang, J., & Li, Y. (2020). The effect of temperature and graphene concentration on the electrical conductivity and dielectric permittivity of graphene–polymer nanocomposites. Acta Mechanica, 231(4), 1305-1320. 2019:[16] Xia, X., Weng, G. J., Hou, D., & Wen, W. (2019). Tailoring the frequency-dependent electrical conductivity and dielectric permittivity of CNT-polymer nanocomposites with nanosized particles. International Journal of Engineering Science, 142, 1-19.2018:[15] Zhang, Q., Xia, X., Wang, J., & Su, Y. (2018). Effects of epitaxial strain, film thickness and electric-field frequency on the ferroelectric behavior of BaTiO3 nano films. International Journal of Solids and Structures, 144, 32-45.2017:[14] Xia, X., Su, Y., Zhong, Z., & Weng, G. J. (2017). A unified theory of plasticity, progressive damage and failure in graphene-metal nanocomposites. International Journal of Plasticity, 99, 58-80.[13] Xia, X., & Zhong, Z. (2017). Semi-permeable Yoffe-type interfacial crack analysis in MEE composites based on the strip electro-magnetic polarization saturation model. Acta Mechanica Solida Sinica, 30(4), 354-368.[12] Xia, X., Mazzeo, A. D., Zhong, Z., & Weng, G. J. (2017). An X-band theory of electromagnetic interference shielding for graphene-polymer nanocomposites. Journal of Applied Physics, 122(2), 025104.[11] Xia, X., Zhong, Z., & Weng, G. J. (2017). Maxwell–Wagner–Sillars mechanism in the frequency dependence of electrical conductivity and dielectric permittivity of graphene-polymer nanocomposites. Mechanics of Materials, 109, 42-50.[10] Xia, X., Hao, J., Wang, Y., Zhong, Z., & Weng, G. J. (2017). Theory of electrical conductivity and dielectric permittivity of highly aligned graphene-based nanocomposites. Journal of Physics: Condensed Matter, 29(20), 205702.[9] Wang, Y., Xia, X., & Weng, G. J. (2017). Magnetoelectric coupling and interface effects of multiferroic composites under stress-prescribed boundary condition. Reviews on Advanced Materials Science, 48(1), 78-90.[8] Xia, X., Wang, Y., Zhong, Z., & Weng, G. J. (2017). A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites. Carbon, 111, 221-230.2016:[7] Xia, X., Wang, Y., Zhong, Z., & Weng, G. J. (2016). Theory of electric creep and electromechanical coupling with domain evolution for non-poled and fully poled ferroelectric ceramics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2194), 20160468.[6] Xia, X., & Zhong, Z. (2016). Tuning of non-uniform switch toughening in ferroelectric composites by an electric field. Acta Mechanica Sinica, 32(5), 866-880.[5] Xia, X., Wang, Y., Zhong, Z., & Weng, G. J. (2016). A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams. Journal of Applied Physics, 120(8), 085102.2015:[4] Xia, X., & Zhong, Z. (2015). A mode III moving interfacial crack based on strip magneto-electric polarization saturation model. Smart Materials and Structures, 24(8), 085015.[3] Xia, X., & Zhong, Z. (2015). Conservation integrals for the interfacial crack in bimaterial and layered ferroelectrics. Engineering Fracture Mechanics, 134, 202-217.2014:[2] Xia, X., Cui, Y., & Zhong, Z. (2014). A mode III interfacial crack under nonuniform ferro-elastic domain switching. Theoretical and Applied Fracture Mechanics, 69, 44-52.[1] Xia, X., Cui, Y., & Zhong, Z. (2014). Nonuniform ferro-elastic domain switching for the interfacial crack. Procedia Materials Science, 3, 1638-1643.
Xiaodong Xia
Sex:Male
Education Level:PhD Graduate
Alma Mater:Tongji University