Personal Homepage

Personal Information

MORE+



E-Mail:

School/Department:School of Energy Science and Engineering

Education Level:With Certificate of Graduation for Doctorate Study

Business Address:中南大学 能源科学与工程学院 113

Contact Information:xuxiang@csu.edu.cn

Degree:Doctoral Degree in Engineering

Status:Employed

Alma Mater:中南大学

Xiang Xu

+

Education Level:With Certificate of Graduation for Doctorate Study

Alma Mater:中南大学

Journal Publications

Current position: Home / Journal Publications
Mechanistic effects of graphitization and oxygen functional groups on benzene competitive adsorption of porous carbon under high humidity conditions

DOI number:10.1016/j.colsurfa.2024.135383
Affiliation of Author(s):中南大学
Journal:Colloids and Surfaces A: Physicochemical and Engineering Aspects
Key Words:VOCs adsorptionPorous carbonGraphitizationOxygen functional groupGCMC&DFT
Abstract:Porous carbon is an ideal adsorbent for the elimination of volatile organic compounds (VOCs) attributed to their price, availability and excellent adsorption capacity. However, there are significant variation in the adsorption capacity and adsorption selectivity of different precursors for VOCs under humid conditions after modification because of the differences in their own structural properties. In this study, graphitized hydrophobic porous carbon with excellent specific surface area was successfully synthesized by selecting bamboo fiber, maize, coconut husk and coal as precursors and potassium hydroxide as an activator. Among them, the dynamic adsorption capacity of benzene in the sample with bamboo fiber as precursor was maintained at 74.7 % under the high humidity condition (RH90 %) compared with the dry state (RH0 %). Grand Canonical Monte Carlo (GCMC) simulations and weak interaction force analyses showed that enhanced dispersion attraction between graphitized carbon surfaces and benzene molecules in comparison to disordered carbon surfaces. The existence of oxygen functional groups enhanced the interaction between porous carbon and water through hydrogen bonding leading to preferential adsorption of water molecules, which resulting in the decrease of their adsorption performance in wet condition. This research provided theoretical and experimental views of the effects of graphitization and oxygen functional groups on the competitive adsorption capture of benzene and water by porous carbon, which further provided a reliable approach to synthesizing porous carbon with high adsorption capture for benzene removal in high humidity environments.
Indexed by:Journal paper
Document Code:135383
Volume:703
Translation or Not:no
Date of Publication:2024-09-29
Included Journals:SCI
Links to published journals:https://www.sciencedirect.com/science/article/pii/S0927775724022477?via%3Dihub