Journal Publications
[1]A comprehensive hybrid first principles/machine learning modeling framework for complex industrial processes [J].Journal of Process Control, 2020, 86: 30-43.
[2]A Robust Transfer Dictionary Learning Algorithm for Industrial Process Monitoring [J].Engineering, 2021, 7 (9) : 1262-1273.
[3]A Cumulative Canonical Correlation Analysis-Based Sensor Precision Degradation Detection Method[J].IEEE Transactions on Industrial Electronics, 2019, 66(8): 6321-6330.
[4]A novel asynchronous control for artificial delayed Markovian jump systems via output feedback sliding mode approach[J].IEEE Transactions on Systems, Man, and Cybernetics, 2019, 49(2): 364-374.
[5]A New Data Reconciliation Strategy Based on Mutual Information for Industrial Processes[J].Industrial & Engineering Chemistry Research, 2018, 57(38): 12861–12870.
[6]A data-driven adaptive multivariate steady state detection strategy for the evaporation process of the sodium aluminate solution[J].Journal of Process Control, 2018, 68: 145-159.
[7]Passivity-based asynchronous sliding mode control for delayed singular Markovian jump systems[J].IEEE Transactions on Automatic Control, 2018, 63(8): 2715-2721.
[8]Hardware-in-the-loop fault injection for traction control system[J].IEEE J. Emerging and Selected Topics in Power Ele., 2018, 6(2): 696-706.
[9]Exploiting correlation for confident sensing in fusion-based wireless sensor networks[J].IEEE Transactions on Industrial Electronics, 2018: 4962-4972.
[10]Controllable-domain-based fuzzy rule extraction for copper removal process control[J].IEEE Transactions on Fuzzy Systems, 2018, 26(3): 1744-1756.
[11]Dynamic multi-objective optimization arising in iron precipitation of zinc hydrometallurgy[J], 2017, 173: 134-148.
[12]A fault-injection strategy for traction drive control systems[J].IEEE Transactions on Industrial Electronics, 2017 (64(7)) : 5719-5727.
[13]Temperature uniformity control of large-scale vertical quench furnaces for aluminum alloy thermal treatment[J].IEEE Transactions on Control Systems Technology, 2016, 24(1): 24-39.
[14]Evaluation strategy for the control of the copper removal process based on oxidation–reduction potential[J].Chemical Engineering Journal, 2016, 284: 294-304.
[15]Additive requirement ratio prediction using trend distribution features for hydrometallurgical purification processes[J].Control Engineering Practice, 2016, 46: 10-25.
[16]Optimal control of an industrial-scale evaporation process: Sodium aluminate solution[J].Control Engineering Practice, 2012, 20(6): 618-628.
[17]Modeling and Optimal-setting Control of Blending Process in a Metallurgical Industry[J].Computers and Chemical Engineering, 2009, 33(7): 1289-1297.
[18]A Two-stage Intelligent Optimization System for the Raw Slurry Preparing Process of Alumina Sintering Production[J].Engineering Applications ofArtificial Intelligence, 2009, 22: 786-795.
[19]An Optimal Power-Dispatching System Using Neural Networks for the Electrochemical Process of Zinc Depending on Varying Prices of Electricity[J].IEEE Trans. on Neural Networks, 2002, 13(1): 229-236.
total19 1/1 first previous next last
Chunhua Yang
Zip Code:c576f0c85848a14d10428d1b79269fc7d68bde9ba6ecb95648b168a03671c3821c778c2bedf0cae5d03c95a065c3a5efa4243241acb9eb6089885db6f9f3fa7f5b7491eb5af48e7ab43d253e29e0fa6991b0af260ac98903cc7fbca150cb2fc86cb6bd41d95f78a263ba3d6f6aa504ee56cdd8693f2e6f13b576940cee3633de
Office Phone:3c57bd5fb79d6e23ef38059a26e2a894be5cc7b7f7e149bfb7b925cfeb24f4d7561816c02c95d41127c61e1756f404d9623b2224f9f7f73913d63f782ad9f6f6966a35b54c05dc663c1add65cba398a5d0a5253483be35caa07aeb45efae7936b6b3afa42581dc1efac0100c980637f4ea6b9e85083c7028d893b0a56d72281e
Email:6b3aeba083b0eccdd379c1d697abc19411e218836181bed901345ea07697d980f190fa1583e9921274666ca959ef42bca92250c5cb9042ce012e20feebd703e89db49566e3be8a2e74c43e3c8b232ed6a6ec0e50f53dbe7e034cf2f28afa450fd8a54b9725c370489d1cb9a81a4dbd6d7b37837a91bd9b07d30e367301160fb0