- [1]Clean Process for Selective Recovery of Lithium Carbonate from Waste Lithium-Bearing Aluminum Electrolyte Slag.Industrial & Engineering Chemistry Research, 2023
- [2]Gradient surficial forward Ni and interior reversed Mo-doped CuWO4 films for enhanced photoelectrochemical water splitting.Chemical Engineering Journal, 2023, 471: 144730.
- [3]Engineering surficial atom arrangement on α-SnWO4 film for efficient photoelectrochemical water splitting.Chemical Engineering Journal, 2023, 469: 144096.
- [4]Oriented CuWO4 Films for Improved Photoelectrochemical Water Splitting.ACS Applied Materials & Interfaces, 2022, 14(42): 47737-47746, 2022
- [5]Effects of operating temperature on photoelectrochemical performance of CuWO4 film photoanode.Journal of Electroanalytical Chemistry, 2022: 116859, 2022
- [6]Constructing a Two-Dimensional SnWO4 Nanosheet Array Film for Enhanced Photoelectrochemical Performance.ACS Applied Energy Materials, 2022, 5(9): 11883-11891, 2022
- [7]Nail-like α-SnWO4 Array Film with Increased Reactive Facets for Photoelectrochemical Water Splitting.The Journal of Physical Chemistry C, 2022, 126(37): 15596-15605, 2022
- [8]Two-Dimensional Long-Plate SnWO4 Photoanode Exposed Active Facets for Enhanced Solar Water Splitting.ACS Applied Energy Materials, 2022, 5(9): 11732-11739., 2022
- [9]Microwave hydrothermal renovating and reassembling spent lithium cobalt oxide for lithium-ion battery[J].Waste Management, 2022, 143: 186-194.
- [10]Doubling Micropore of Carbon Skeleton via Regulating Molecular Structure of Carbohydrate for Oxygen Reduction Reaction[J].Journal of The Electrochemical Society, 2022, 169: 046510.
- [11]Lithium-induced amorphization of Ni–Fe layered-double-hydroxide for highly efficient oxygen evolution.Electrochimica Acta, 2021, 389: 138523.
- [12]Boosting the Photoelectrochemical Performance of BiVO4 Photoanodes by Modulating Bulk and Interfacial Charge Transfer.ACS Applied Electronic Materials, 2021
- [13]3D spiral-like polyhedron nanocarbon confining uniformly dispersed Co nanoparticles for bifunctional electrocatalyst in metal-air battery.Journal of Power Sources, 2021, 482: 228897.
- [14]Modulating Charge Transfer Efficiency of Hematite Photoanode with Hybrid Dual-Metal–Organic Frameworks for Boosting Photoelectrochemical Water Oxidation.Advanced Science, 2020
- [15]Xiang Yin, Yang Liu, Jie Li, Weixin Qiu, Wenzhang Li, Keke Wang, Xuetao Yang, Libo Du.Effects of alkali ion on boosting WO3 photoelectrochemical performance by electrochemical doping.International Journal of Hydrogen Energy, 2020, 45 (38) : 19257-19266.
- [16]Boosting Photoelectrochemical Performance of BiVO4 through Photoassisted Self-Reduction.ACS Applied Energy Materials, 2020, 3 (5) : 4403-4410.
- [17]High porosity Mo doped BiVO4 film by vanadium re-substitution for efficient photoelectrochemical water splitting[J].Chemical Engineering Journal, 2020, 389: 124365.
- [18]J. Li, D. Li, Y. Liu, Q. Liu, L. Du, W. Li.Trimetallic oxyhydroxide modified 3D coral-like BiVO4 photoanode for efficient solar water splitting[J].Chemical Engineering Journal, 2019
- [19]C.B. Mullins, A.I. Frenkel, A. Ebrahim, A. Shoola, M. Wang, Y. Liu, O. Mabayoje.Electrodeposition of MoSx Hydrogen Evolution Catalysts from Sulfur-Rich Precursors[J].ACS Applied Materials & Interfaces, 2019, 11 (36) : 32879-32886.
- [20]Y. Liu, Q. Li, J. Zhan, J. Li, X. Qiu, M. Liu, Y. Wang, F. Zhan, X. Yang, K. Wang, W. Li.Surfactant-assisted controlled synthesis of a metal-organic framework on Fe2O3 nanorod for boosted photoelectrochemical water oxidation[J].Chemical Engineering Journal, 2019, 379: 122256.