周世琦
  • 学位:博士学位
  • 学科:物理学
  • 所在单位:物理学院

博士生导师 硕士生导师

入职时间:2007-10-24
所在单位:物理学院
学历:博士研究生毕业
办公地点:中南大学新校区物理楼439
性别:
联系方式:18908463096
学位:博士学位
在职信息:在职

学科:物理学


研究领域

统计物理(Phase transition、Liquid theory,Soft condensed physics),Statistical field theory

以单一作者(约占三分之二)或单一第一作者兼唯一通讯作者(占三分之一)发表如下论文:

179 Cheng Tian, S. Zhou,* Electrode Wettability and Capacitance of Electrical Doubl Layer Capacitor: A Classical Density Functional Theory Study, Accepted by J. Stat. Mech.-Theory E.

178 S. Zhou,* Variability of entropy force and its coupling with electrostatic and steric hindrance interactions, J. Stat. Mech.-Theory E, Paper ID/043202(2024). DOI 10.1088/1742-5468/ad363e.

177 S. Zhou,* Effective electrostatic potential in polar solvent added with ionic liquid, J. Mol. Liq. 397, 124167(2024). https://doi.org/10.1016/j.molliq.2024.124167.

176 S. Zhou,* On Capacitance Enhancement at Decreasing Pore Width and its Relation with Solvent Concentration and Polarity, J. Electrochem. Soc. 170, 090536(2023). https://doi.org/10.1149/1945-7111/acf95b.

175 S. Zhou, A. Bakhshandeh,* Interaction between two overall neutral charged microscopically patterned surfaces, J. Chem. Phys. 159, 044706(2023).

174 S. Zhou,* Effective electrostatic interaction between columnar colloids: roles of solvent steric hindrance, polarity, and surface geometric characteristics, Mol. Phys. DOI: 10.1080/00268976.2023.2216632(2023).

173 S. Zhou,* J. R. Solana, Integral equation theories for fluid with very short-range screened Coulomb plus power series interactions, Vol 121, issue 2 Mol. Phys. DOI: 10.1080/00268976.2022.2157344(2023).

172 S. Yang, Y. Deng, S. Zhou,* Capacitive Behavior of Aqueous Electrical Double Layer Based on Dipole Dimer Water Model, Nanomaterials (Special Issue “Theoretical, Computational, and Experimental Advances in Nanostructures for Energy Conversion and Storage”), 13, 16(2023). https://doi.org/10.3390/nano13010016.

171 S. Zhou,* Mechanism of oscillation of aqueous electrical double layer capacitance: Role of solvent, J. Mol. Liq. 364, 119943(2022).

170 S. Zhou,* On Capacitance and Energy Storage of Supercapacitor with Dielectric Constant Discontinuity, Nanomaterials 12, 2534(2022).

169 S. Zhou,* and R. Zhou, Influence of ion structure and solvent electric dipole on ultrananoporous supercapacitor: a lattice model study, Phys. Scr. 97, 085402(2022).

168 S. Zhou,* Effective electrostatic forces between two neutral surfaces with surface charge separation: valence asymmetry and dielectric constant heterogeneity, Mol. Phys. DOI: 10.1080/00268976.2022.2094296(2022).

167 S. Zhou,* L.-T. Zhang, Analytical Solution of Modified Poisson-Boltzmann Equation and Application to Cylindrical Nanopore Supercapacitor Energy Storage, Colloid J. 84, 222-242(2022).

166 S. Zhou,* and R. Zhou, Ultrananoporous supercapacitor with ionic liquid comprised of two-site cation: an Ising model study (II), J. Phys. D: Appl. Phys. 55, 304005(2022).

165 S. Zhou, S. Lamperski,* Unusual properties of the electric double layer in an extremely narrow nanotube. A grand canonical Monte Carlo and classical DFT study, J. Phys. Chem. Solids 161, 110440(2022).
164 S. Zhou, R. Zhou, Ising model study on effects of solvent electric dipole on ultrananoporous supercapacitor, Chinese J. Phys. 73, 391–405(2021).

163 S. Zhou,* R. Zhou, C. Tian, Impacts of solvent electric dipole and ion valency on energy storage in ultrananoporous supercapacitor: An ising model study, J. Phys. Chem. Solids 157, 110188(2021).

162 S. Zhou,* Surface electrostatic force in presence of dimer counter-ion J. Molec. Liq. 328, 115225 (2021).

161 S. Zhou, * A statistical mechanics study on relationship between nanopore size and energy storage in supercapacitors, J. Phys. Chem. Solids 148, 109705(2021).

160 S. Zhou, * Effective electrostatic forces between two neutral surfaces with atomic scale strip shape surface charge separation, J. Molec. Liq. 312, 113272(2020).

159 S. Zhou, *  Inter-surface effective electrostatic interactions in the presence of surface charge discreteness and solvent granularity, Mol. Phys, 118,(2020), DOI: 10.1080/00268976.2020.1778807.

158 S. Zhou,* On the statistical mechanics investigation of structure and effective electrostatic force between two solid surfaces in electrolyte dissolved in non-polar solvent, J. Stat. Mech.-Theory E, Paper ID/ 073210 (2020).

157 S. Zhou,* How Ion Size influences Energy Storage in Cylindrical Nanoporous Supercapacitors, J. Phys. Chem. C 123, 29638−29646 (2019).

156 S. Zhou,* Role of neutral and non-hard sphere interaction in differential capacitance of electrical double-layer, J. Molec. Liq. 295, 111620(2019).

155 S. Zhou,* Effects of interionic non-hard sphere neutral interaction and solvent crowding on differential capacitance curve of electrical double layer, J. Chem. Phys. 151, 064710 (2019).

154 S. Zhou,* Solvent granularity in the differential electrical capacitance of supercapacitor and mechanism analysis, Physica A: Statistical Mechanics and its Applications 533, 121905(2019).

153 S. Zhou,* Effective electrostatic potential between two oppositely charged cylinder rods in primitive model and extended primitive model electrolytes, J. Stat. Mech.-Theory E, Paper ID/ 033213(2019).

152 S. Zhou,* Investigation about validity of the Derjaguin approximation for electrostatic interactions for a sphere-sphere system, Colloid Polym. Sci. 297, 623(2019).

151 S. Lamperski, S. Zhou, * Structural and electrical properties of an electric double layer formed inside a cylindrical pore investigated by Monte Carlo and classical density functional theory, Microfluid Nanofluid, 23, 20(2019).

150 S. Zhou,* Influence of solvent granularity on the effective interactions between two overall neutral surfaces with quenched charge heterogeneity, J. Molec. Liq. 273, 155–163(2019).

149 S. Zhou,* Capacitance of electrical double layer formed inside a single infinitely long cylindrical pore, J. Stat. Mech.-Theory E, Paper ID/ 103203 (2018).

148 S. Zhou,* Padé approximant for hard sphere + square well and hard sphere + square well + square shoulder model fluids, Physica A: Statistical Mechanics and its Applications 512, 1260-1277(2018).

147 S. Zhou,* Wetting Transition of Nonpolar Neutral Molecule System on a Neutral and Atomic Length Scale Roughness Substrate, J. Stat. Phys. 170, 979(2018).

146 S. Zhou,* and J. R. Solana, Thermodynamic properties of diamond and wurtzite model fluids from computer simulation and thermodynamic perturbation theory, Physica A: Statistical Mechanics and its Applications 493, 342-358(2018).

145 S. Zhou,* and J. R. Solana, Thermodynamic properties of fluids with Lennard–Jones–Gauss potential from computer simulation and the coupling parameter series expansion, Mol. Phys. 116, 491-506(2018).

144 S. Zhou,* Effective Electrostatic Interactions Between Two Overall Neutral Surfaces with Quenched Charge Heterogeneity Over Atomic Length Scale, J. Stat. Phys. 169, 1019-1037(2017).

143 S. Zhou,* A statistical mechanics investigation about general aspects of wetting transition occurring in nonpolar neutral molecule system with a smooth solid wall, Chem. Phys. 494, 31–46(2017).

142 S. Zhou,* S. Lamperski, and M. Sokołowska, Classical density functional theory and Monte Carlo simulation study of electric double layer in the vicinity of a cylindrical electrode, J. Stat. Mech.-Theory E, Paper ID/ 073207(2017).

141 S. Zhou,* A new method suitable for calculating accurately wetting temperature over a wide range of conditions: Based on the adaptation of continuation algorithm to classical DFT, J. Phys. Chem. Solids, 110, 274-283(2017).

140 S. Zhou,* and R. Zhou, A comprehensive comparison between thermodynamic perturbation theory and first-order mean spherical approximation: Based on discrete potentials with hard core, Chem. Phys. 493, 1-11(2017).

139 S. Zhou,* and M. Zhang, Statistical mechanics study on wetting behaviors of Ne on Mg surface, J. Phys. Chem. Solids, 103, 123-131(2017).

138 S. Zhou,* and G. Liu, Influences of depletion potential on vapor-liquid critical point metastability, AIP Advances 6, 045307(2016).
137 S. Zhou,* Change of electrostatic potential of mean force between two curved surfaces due to different salt composition, ion valence and size under certain ionic strength, J. Phys. Chem. Solids, 89, 53-61(2016).

136 S. Zhou,* Electrostatic potential of mean force between two curved surfaces in the presence of counterion connectivity, Phys. Rev. E 92, 052317(2015).

135 S. Zhou,* Three-body potential amongst similarly or differently charged cylinder colloids immersed in a simple electrolyte solution, J. Stat. Mech.-Theory E Paper ID/ P11030(2015).

134 S. Zhou*, Q. Zhong, Approximate Analytic Expression of Surface Charge Density/Surface Potential Relationship for a Spherical Colloidal Particle Immersed in a General Electrolyte Solution, J. Disper. Sci. Technol. 36, 1742-1747(2015).

133 S. Zhou*, L. Yang, Performance Evaluation on Several Exchange-correlation Functional Ap-proximations in Calculations of Alkali-metals and IB Group Metals Pair Potentials, Open Physics Journal, 2,1-10(2015).

132 S. Zhou*, J. R. Solana, Excellence of numerical differentiation method in calculating the coefficients of high temperature series expansion of the free energy and convergence problem of the expansion, J. Chem. Phys.141, 244506(2014).

131 S. Zhou*, S. Lamperski, and M. Zydorczak, Properties of a planar electric double layer under extreme conditions investigated by classical density functional theory and Monte Carlo simulations, J. Chem. Phys. 141, 064701(2014).

130 S. Zhou*, Effects of discreteness of surface charges on the effective electrostatic interactions, J. Chem. Phys. 140, 234704(2014).

129 S. Zhou*, and J. R. Solana, Coupling parameter series expansion for fluid with square-well plus

repulsive-square-barrier potential, AIP Advances 3, 102103(2013).

128 S. Zhou*, Convergence and low temperature adaptability analysis of the high temperature series expansion of the free energy, J. Chem. Phys. 139, 124111(2013).

127 S. Zhou*, and J. R. Solana, The First Three Coecients in the High Temperature Series Expansion of Free Energy for Simple Potential Models with Hard-Sphere Cores and Continuous Tails, J. Phys. Chem. B 117, 9305(2013).

126 S. Zhou*, X. Liu, K. Yang, and H. Zou, Study of H2 physical adsorption in single-walled carbon nanotube array, AIP Advances 3, 082119(2013).

125 S. Zhou*, and J. R. Solana, Monte Carlo and theoretical calculations of the first four perturbation coefficients in the high temperature series expansion of the free energy for discrete and core-softened potential models, J. Chem. Phys. 138, 244115(2013).

124 S. Zhou*, Novel anomalies for like-charged attraction between curved surfaces and formulation of a hydrogen bonding style mechanism, AIP Advances 3, 032109 (2013).

123 S. Zhou*, Density Functional Analysis of Like-Charged Attraction between Two Similarly Charged Cylinder Polyelectrolytes, Langmuir 29, 12490-12501(2013).

122 S. Zhou*, Effects of nanoscale surface corrugation on surface-to-surface effective potential, Microfluid Nanofluid, 14, 859(2013).

121 S. Zhou*, and G. Zhang, Highly accurate and simple analytical approach to nonlinear Poisson– Boltzmann equation, Colloid Polym. Sci. 291, 879(2013).

120 S. Zhou*, and G. Zhang, Approximate analytic solution of the nonlinear Poisson–Boltzmann equation for spherical colloidal particles immersed in a general electrolyte solution, Colloid Polym. Sci. 290, 1511(2012).

119 S. Zhou*, and H. Wu, Analytical solutions of nonlinear Poisson–Boltzmann equation for colloidal particles immersed in a general electrolyte solution by homotopy perturbation technique, Colloid Polym. Sci. 290, 1165(2012).

118 S. Zhou*, Liquid theory with high accuracy and broad applicability: Coupling parameter series expansion and non hard sphere perturbation strategy, AIP Advances 1, 040703(2011).

117 S. Zhou*, Non hard sphere thermodynamic perturbation theory over a wide range of temperatures, J. Stat. Mech.-Theory E Paper ID/P09001(2011).

116 S. Zhou*, Non-hard sphere thermodynamic perturbation theory, J. Chem. Phys. 135, 074103(2011).

115 S. Zhou*, and G. Zhang, Approximate analytical expressions for electrical potential distribution and surface charge density/surface potential relationship for planar, cylindrical, and spherical entities immersed in a general electrolyte solution, Colloid Surface A 385, 28(2011).

114 S. Zhou*, Acute effect of trace component on capillary phase transition of n-alkanes, J. Stat. Mech.-Theory E Paper ID/P05023(2011).

113 S. Zhou*, Modulation of capillary condensation by trace component, AIP Advances 1, 022148(2011).

112 S. Zhou*, Enhanced KR-Fundamental Measure Functional for Inhomogeneous Binary and Ternary Hard Sphere Mixtures, Commun. Theor. Phys. 55, 46(2011).

111 S. Zhou*, Going beyond the mean field approximation in classical density functional theory and application to one attractive core-softened model fluid, J. Stat. Mech.-Theory E Paper ID/P11039(2010).

110 S. Zhou*, Free Energy Density Functional for Adsorption of Fluids in Nanopores, Langmuir 26, 17037(2010).

109 S. Zhou*, A theoretical investigation on the honeycomb potential fluid, J. Chem. Phys. 133, 134107(2010).

108 S. Zhou*, Local Self-Consistent Ornstein−Zernike Integral Equation Theory and Application to a Generalized Lennard-Jones Potential, J. Phys. Chem. B 114, 11525(2010).

107 S. Zhou*, New free energy density functional and application to core-softened fluid, J. Chem. Phys. 132, 194112(2010).

106 S. Zhou*, Augmented Kierlik-Rosinberg Fundamental Measure Functional and Extension of Fundamental Measure Functional to Inhomogeneous Non-hard Sphere Fluids, Commun. Theor. Phys. 54, 1023(2010).

105 S. Zhou*, and J. R. Solana, Low temperature behavior of thermodynamic perturbation theory, Phys. Chem. Chem. Phys. 11, 11528(2009).

104 S. Zhou*, and J. R. Solana, Inquiry into thermodynamic behavior of hard sphere plus repulsive barrier of finite height, J. Chem. Phys. 131, 204503(2009).

103 S. Zhou*, and J. R. Solana, Comprehensive investigation about the second order term of thermodynamic perturbation expansion, J. Chem. Phys. 131, 134106(2009).

102 S. Zhou*, A new scheme for perturbation contribution in density functional theory and application to solvation force and critical fluctuations J. Chem. Phys. 131, 134702(2009).

101 S. Zhou*, How critical fluctuations influence adsorption properties of a van der Waals fluid onto a spherical colloidal particle, Theor. Chem. Acc. 124, 279(2009).

100 S. Zhou*, Theoretical Investigation about the Possible Consequence of Artificial Discontinuity in Pair Potential Function on Overall Phase Behavior, J. Phys. Chem. B 113, 8635(2009).

99 S. Zhou*, and J. R. Solana, Progress in the Perturbation Approach in Fluid and Fluid-Related Theories, Chem. Rev. 109, 2829(2009).

98 S. Zhou*, How to make thermodynamic perturbation theory to be suitable for low temperature?

J. Chem. Phys. 130, 054103(2009).

97 S. Zhou*, Reformulation of liquid perturbation theory for low temperatures, Phys. Rev. E 79, 011126(2009).

96 S. Zhou*, Thermodynamics and phase behavior of a triangle-well model and density-dependent variety, J. Chem. Phys. 130, 014502(2009).

95 S. Zhou*, and A. Jamnik, Structural Properties of a Model System with Effective Interparticle Interaction Potential Applicable in Modeling of Complex Fluids, J. Phys. Chem. B 112, 13862(2008).

94 S. Zhou*, A. Lajovic, and A. Jamnik, Local structures of fluid with discrete spherical potential: Theory and grand canonical ensemble Monte Carlo simulation, J. Chem. Phys. 129, 124503(2008).

93 S. Zhou*, and J. R. Solana, Third-order thermodynamic perturbation theory for effective potentials that model complex fluids, Phys. Rev. E 78, 021503(2008).

92 S. Zhou*, Bridge density functional approximation for non-uniform hard core repulsive Yukawa fluid, Chinese Phys. B 17, 3812(2008).

91 S. Zhou*, H. Xu, and B. Zhang, Phase Transitions in Fluid State of Systems of Purely Repulsive Potentials, The Open Chem. Phys. J. 1, 42(2008).

90 S. Zhou*, Phase behaviour of purely repulsive systems: Violation of traditional van der Waals picture, Chinese Phys. Lett. 25, 2132(2008).

89 S. Zhou*, Fifth-order thermodynamic perturbation theory of uniform and nonuniform fluids, Phys. Rev. E 77, 041110(2008).

88 S. Zhou*, Phase behavior of density-dependent pair potentials, J. Chem. Phys. 128, 104511(2008).

87 S. Zhou*, Can the second virial coefficient be a predictor for the critical temperature?

Mol. Simulat. 33, 1187(2007).

86 S. Zhou*, Performance Evaluation of Third-Order Thermodynamic Perturbation Theory and Comparison with Existing Liquid State Theories, J. Phys. Chem. B 111, 10736(2007).

85 S. Zhou*, Solid phase thermodynamic perturbation theory: Test and application to multiple solid phases, J. Chem. Phys. 127, 084512(2007).

84 S. Zhou*, Density functional approximation for van der Waals fluids: based on hard sphere density functional approximation, Chinese Phys. 16, 1167(2007).

83 S. Zhou*, Accurate and local formulation for thermodynamic properties directly from integral equation method, Theor. Chem. Acc. 117, 555(2007).

82 S. Zhou*, A. Jamnik, E. Wolfe, and S. V. Buldyrev, Local Structure and Thermodynamics of a Core-Softened Potential Fluid: Theory and Simulation, Chem.Phys.Chem. 8, 138(2007).

81 S. Zhou*, Statistical mechanics approach to inhomogeneous van der Waals fluids, Mol. Simulat. 32, 1165(2006).

80 S. Zhou*, ‘Exact’ integral equation theory and local formulation for excess thermodynamic properties of hard spheres, Chem. Phys. 330, 478(2006).

79 S. Zhou*, Improvement on macroscopic compressibility approximation and beyond, J. Chem. Phys. 125, 144518(2006).

78 S. Zhou*, Thermodynamic perturbation theory in fluid statistical mechanics, Phys. Rev. E 74, 031119(2006).

77 S. Zhou*, and A. Jamnik, Is perturbation DFT approach applicable to purely repulsive fluids? Phys. Chem. Chem. Phys. 8, 4009(2006).

76 S. Zhou*, Formalism for calculation of polymer-solvent-mediated potential, Phys. Rev. E 74, 011402(2006).

75 S. Zhou, and A. Jamnik*, Structure of inhomogeneous Lennard-Jones fluid near the critical region and close to the vapor-liquid coexistence curve: Monte Carlo and density-functional theory studies, Phys. Rev. E 73, 011202(2006).

74 S. Zhou*, How to extend hard sphere density functional approximation to nonuniform nonhard sphere fluids: Applicable to both subcritical and supercritical temperature regions, J. Chem. Phys. 124, 144501(2006).

73 S. Zhou*, and A. Jamnik, Further Test of Third Order + Second-Order Perturbation DFT Approach: Hard Core Repulsive Yukawa Fluid Subjected to Diverse External Fields, J. Phys. Chem. B 110, 6924(2006).

72 S. Zhou*, Density Functional Approximation for Non-hard Sphere Fluids Subjected to External Fields, Int. J. Mod. Phys. B 20, 469(2006).

71 S. Zhou*, Polymer density functional theory approach based on scaling second-order direct correlation function, J. Colloid Interface Sci. 298, 31(2006).

70 S. Zhou*, Theoretical Investigation of Uniform and Non-uniform Penetrable Sphere Fluid, Commun. Theor. Phys. 46, 323(2006).

69 S. Zhou*, and A. Jamnik, Perturbation density functional theory for inhomogeneous fluids, Acta Chim. Slov. 53, 350(2006).

68 S. Zhou*, How to Extend the Bridge Density Functional Approximation to the Confined Non-hard Sphere Fluid, Chinese J. Chem. Phys. 19, 319(2006).

67 S. Zhou*, Rapidly convergent procedure to solve the density profile equation in the classical density functional theory, J. Comput. Chem. 27, 941(2006).

66 S. Zhou*, Extending simple weighted density approximation for hard sphere fluid to Lennard-Jones fluid (I): Test, Int. J. Mod. Phys. B 19, 4701(2005).

65 S. Zhou*, Extending the simple weighted density approximation for a hard-sphere fluid to a Lennard–Jones fluid II. Application, J. Colloid Interface Sci. 290, 364(2005).

64 S. Zhou*, Isostructural solid–solid transitions in binary asymmetrical hard sphere system: Based on solvent-mediated potential, J. Colloid Interface Sci. 288, 308(2005).

63 S. Zhou*, and A. Jamnik, Global and critical test of the perturbation density-functional theory based on extensive simulation of Lennard-Jones fluid near an interface and in confined systems, J. Chem. Phys. 123, 124708(2005).

62 S. Zhou*, Investigation about suitability of hard core attractive Yukawa potential as a model potential for short-range attractive interactions in colloidal dispersions, Colloid Surface A 262, 187(2005).

61 S. Zhou*, Thermodynamic properties and phase equilibrium study of Lennard-Jones model and application to real molecules, Chinese J. Chem. Phys.18, 487(2005).

60 S. Zhou*, and H. Sun, Sedimentation Equilibrium of Colloidal Suspensions in a Planar Pore Based on Density Functional Theory and the Hard-Core Attractive Yukawa Model, J. Phys. Chem. B 109, 6397(2005).

59 S. Zhou*, A Global Investigation about Hard Core Attractive Yukawa Approximation and Adhesive Hard Sphere Approximation for Structure of Colloidal Dispersion Systems, Commun. Theor. Phys. 43, 567(2005).

58 S. Zhou*, and A. Jamnik, Analysis of the validity of perturbation density functional theory: Based on extensive simulation for simple fluid at supercritical and subcritical temperature under various external potentials, J. Chem. Phys. 122, 064503(2005).

57 S. Zhou*, Influence of Solvent-Solvent and Solute-Solvent Interaction Property on Solvent-Mediated Potential, Commun. Theor. Phys. 44, 365(2005).

56 S. Zhou*, Quantitative Description of Potential of Mean Force between Macroparticles in Fluid with Attactive Forces, Commun. Theor. Phys. 43, 735(2005).

55 S. Zhou*, Further investigation about Lagrangian theorem-based density functional approximation: test by non-uniform polymer melt, Chem. Phys. 310, 129(2005).

54 S. Zhou*, Local Solvent Density Augmentation around a Solute in Supercritical Solvent Bath: 1. A Mechanism Explanation and a New Phenomenon, J. Phys. Chem. B 109, 7522(2005).

53 S. Zhou*, New Theoretical Approach for Calculation of Potential of Mean Force, Chinese J. Chem. Phys.18, 679(2005).

52 S. Zhou*, Semi-Analytical Hard Sphere Reference System Theory for Solvent-Mediated Potential (III): Test and Application to System with General Interaction Potentials, Chem. Phys. Lett. 399, 315(2004).

51 S. Zhou*, Universal Calculational Recipe for the Calculation of Solvent-Mediated Potential: (II) Based on Density Functional Theory, Chem. Phys. Lett. 399, 323(2004).

50 S. Zhou*, Universal calculational recipe for solvent-mediated potential: based on a combination of integral equation theory and density functional theory, Chem. Phys. Lett. 392, 110(2004).

49 S. Zhou*, Application of Lagrangian theorem-based density-functional approximation free of adjustable parameters to nonhard-sphere fluid, J. Chem. Phys. 121, 895(2004).

48 S. Zhou*, Solid-Liquid Phase Transition of the Hard-Core Attractive Yukawa System and Its Colloidal Implication, J. Phys. Chem. B 108, 8447(2004).

47 S. Zhou*, Solid–liquid transition of charge-stabilized colloidal dispersions: a single-component structure-function approach, Can. J. Phys. 82, 357(2004).

46 S. Zhou*, X. Zhang, Thermodynamic Perturbation Theory for Solid-Liquid Phase Transition of Lennard-Jones Model, Commun. Theor. Phys. 42, 285(2004).

45 S. Zhou*, X. Zhang, X. Xiang, and H. Xiang, Integral Equation Method for the Determination of the Depletion Potential between Two Colloidal Particles, Chinese J. Chem. Phys. 17, 38(2004).

44 S. Zhou*, Formally Exact Truncated Nonuniform Excess Helmholtz Free Energy Density Functional: Test and Application, J. Phys. Chem. B 108, 3017(2004).

43 S. Zhou*, Perturbative density functional approximation in the view of weighted density concept and beyond, Chem. Phys. Lett. 385, 208(2004).

42 S. Zhou*, Perturbation density functional theory for nonuniform fluid mixture based on Lagrangian theorem, Chem. Phys. 297, 171(2004).

41 S. Zhou*, Lagrangian theorem-based density functional approach free of adjustable parameter, Phys. Lett. A 319, 279(2003).

40 S. Zhou*, Partitioned density functional approach for Lennard-Jones fluid, Phys. Rev. E 68, 061201(2003).

39 S. Zhou*, Thermodynamic properties of hard sphere fluid under confined condition: based on bridge density functional, Chinese Phys. Lett. 20, 2107(2003).

38 S. Zhou*, Mean Spherical Approximation-Based Perturbation Density Functional Theory, Commun. Theor. Phys. 40, 721(2003).

37 S. Zhou*, and X. Zhang, Freezing of Charge-Stabilized Colloidal Dispersions, J. Phys. Chem. B 107, 5294(2003).

36 S. Zhou*, Employing functional counterpart of Lagrangian theorem to improve on density functional theory for density profile of non-uniform fluids, Chem. Phys. 289, 309(2003).

35 S. Zhou*, H. Chen, and X. Zhang, A new uniform phase bridge functional: test and its application to non-uniform phase fluid, Commun. Theor. Phys. 39, 231(2003).

34 S. Zhou*, H. Chen, S. Ling, X. Xiang, and X. Zhang, Statistical mechanics approach for uniform and non-uniform fluid with hard core and interaction tail, Commun. Theor. Phys. 39, 331(2003).

33 S. Zhou*, Structure of a Confined Square-Well Fluid, J. Phys. Chem .B 107, 3585 (2003).

32 S. Zhou*, Formally `exact' first-order Taylor series expansion for density functional theory, New J. Phys. 4, 36(2002).

31 S. Zhou*, Functional Counterpart of Lagrangian theorem and Perturbative Density Functional Theory: A forgotten Idea, Chinese Phys. Lett. 19, 1322(2002).

30 S. Zhou*, and X. Zhang, A New Bridge Functional and Its Application to Density Functional Approach for Non-uniform Fluid, Acta Phys-Chim Sin. 18, 699(2002).

29 S. Zhou*, Perturbation Density Functional Theory for Density Profile of A Non-uniform and Uniform Hard Core Attractive Yukawa Model Fluid, J. Phys. Chem. B 106, 7674(2002).

28 S. Zhou*, and X. Zhang, Universality principle and the development of classical density functional theory, Chinese Phys. 11, 1051(2002).

27 S. Zhou*, Specification of density functional approximation by radial distribution function of bulk fluid, Commun. Theor. Phys. 37, 543(2002).

26 S. Zhou*, Density Functional Approach Based on Numerically Obtained Bridge Functional, Commun. Theor. Phys. 38, 355(2002).

25 S. Zhou*, and X. Zhang, High-order perturbative density functional theory for non-uniform long-range interaction potential fluids near surfaces, J. Colloid Interface Sci. 242, 152(2001).

24 S. Zhou*, Density functional theory based on the universality principle and third-order expansion approximation for adhesive hard-sphere fluid near surfaces, J. Phys. Chem. B 105, 10360(2001).

23 H. Chen*, X. K. Lu, and S. Zhou, et al. Fabrication and Characteristics of AIN nanowires, Mod. Phys. Lett. B 15, 1455(2001).

22 S. Zhou*, A method to incorporate the radial distribution function of bulk fluid into the density functional approximation, J. Chem. Phys. 115, 2212(2001).

21 S. Zhou*, X. Sun, H. Chen, and H. Li, A mixed order density functional theory for adhesive hard sphere fluid confined between two hard walls, J. Chem. Phys. 115, 1115(2001).

20 S. Zhou*, and  X. Zhang, Microscopic approach for the site distribution and thermodynamic properties of a single-component polymer subjected to an external field, Phys. Rev. E 64, 011112(2001).

19 S. Zhou*, Reformulation of density functional theory for generation of the nonuniform density distribution, Phys. Rev. E 63, 061206(2001).

18 S. Zhou*, Transformation from Rogers-Young (RY) approximation to density functional approach for non-uniform fluids: Numerical recipe, Phys. Rev. E 63, 051203(2001).

17 S. Zhou*, A non-perturbative density functional analysis for non-uniform Lennard-Jones fluid, J. Chem. Phys. 113, 8717(2000).

16 S. Zhou*, Inhomogeneous mixture system: A density functional formalism based on the universality of the free energy density functional, J. Chem. Phys. 113, 8719(2000).

15 S. Zhou*, and E. Ruckenstein, A density functional theory based on the universality of the free energy density functional, J. Chem. Phys. 112, 8079(2000).

14 S. Zhou*, and E. Ruckenstein, A new density functional approach to nonuniform Lennard-Jones fluids, J. Chem. Phys. 112, 5242(2000).

13 S. Zhou*, and E. Ruckenstein, High order direct correlation functions of uniform fluids and their application to the high order perturbative density functional theory, Phys. Rev. E 61, 2704(2000).

12 S. Zhou*, A simple weighted-density functional method: Test and its application to hard sphere fluid in spherical cavity, J. Chem. Phys. 110, 2140(1999).

11 S. Zhou*, and S. Guo, Molecular thermodynamic model for reverse micelles system and protein extraction -1. Molecular thermodynamic model for reverse micelles system, Acta Chim Sinica 57, 437(1999).

10 S. Zhou*, An approximate analytic expression for the surface charge density/surface potential relationship for a spherical colloidal particle, J. Colloid Interface Sci. 208, 347(1998).

9 周世琦, 反胶束萃取蛋白质的热力学研究, 博士学位论文, 华南理工大学(1997)

8 周世琦*, 反胶束内表面电荷密度/表面电势的近似解析式,《化学物理学报》, Vol.12, 49(1999)

7 周世琦, 郭祀远*, 李琳, 蔡妙颜, 反胶束稳定性的热力学分析, Journal of South China University of Technology (Natural Science), Vol. 25, 27(1997)

6 周世琦, 郭祀远*, 反胶束萃取蛋白质中静电相互作用能的研究,《化学物理学报》,Vol. 10, 466(1997)

5 周世琦, 郭祀远*, 食品加工与营养,《食品工业科技》, No.97, 64(1996)

4 周世琦, 郭祀远*, 大米陈化机理与改质方的探讨,《粮食储藏》, Vol. 24, 28(1995)

3 周世琦, 郭祀远*, 食品的冷冻干燥,《湖南食品与发酵》,Vol. 20-21,46(1996)

2周世琦*, 环状糊精及在食品中的应用,《湖南食品与发酵》, Vol. 15, 31(1995)

1周世琦*, 膜技术及其在食品工业中的应用,《杭州食品科技》, Vol. 35, 24(1994)

个人简介

理学博士学位;2001年晋升为教授,2007年晋升为首批二级教授。中南大学理论物理学科升华学者计划特聘教授;担任国际学术期刊The Open Chemical Physics Journal主编(Editor-in-Chief)、International Journal of Liquid State Sciences主编(Editor-in-Chief)、Advanced Science Letters 副编辑(associate editor)、Journal of Physics & Astronomy 编委等。主要研究方向为统计物理、统计场论、凝聚态量子多体理论。
本方向招收凝聚态量子多体理论、熟悉Vasp等一性原理计算Lammps等分子动力学软件计算的博士生、接受国内外访问学者、博士后研究人员,希望有兴趣者加盟。联系方式:0731-88642976、18908463096(微信同号)、chixiayzsq@163.com。

学术合作:
Applied Physics Department, University of Cantabria, 39005 Santander, Spain,J. R. Solana教授,from 2008-now;

Department of Physical Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614 Poznań, Poland, Stanisław Lamperski教授,from 2013-now

Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil,Amin Bakhshandeh教授,

from 2023-now


主要学术贡献:
(1) 作为第一作者与通讯作者首创了“使用自由能密度泛函的普适性原理构作经典密度泛函近似”的新思想,这同时也是理论概念上的创新。在经典 DFT 密度泛函近似的不同分类方案中,已有不少同行学者在文献上将之与由 T. V. Ramakrishnan、M.Yussouff、P. Tarazona、N. W. Ashcroft、Y. Rosenfeld 开创的泛函摄动展开近似、权重密度近似、基本测度泛函近似并列而成为单独的一类、同时也得到了诸多同行学者在本方向权威期刊上所给予的高度关注与大段的评述。
(2) 单独提出的“萃取”体相流体径向分布函数发展密度泛函近似的新思路,在为纪念 Rosenfeld 教授提出基本测度泛函近似而由 J. Phys.: Condens. Matter 出版的关于液体密度泛函理论的专辑中,Cuesta 教授撰文对这项工作作了“very seriously”的引用;基本测度泛函近似的创始人 Rosenfeld 教授的高度评价、以及多位同行学者在发表论文时所给予的特别关注都说明了其新颖性。
(3) 作为第一作者与通讯作者推导出的“体相流体高阶直接相关函数解析表达式”,为发展高阶摄动密度泛函近似奠定了理论基础;目前已被国外学者用来成功地解释了二型超导体中三体相关效应(Phys. Rev. Lett. 97(2006)177004)、被应用于从动力密度泛函理论推导出双组份系统相场晶格动力学的关键步骤中(Phys.Rev.E 82(2010)021605)、以及应用于新理论的构建。这说明了该项工作在提出、发展新理论过程中的基础地位、以及在多个领域内所具有的普遍理论意义。
(4) 单独提出了“将硬球流体密度泛函近似扩展到非硬球流体的普适性理论方案”、“超越平均场密度泛函近似”,被同行专家在文献中评述为:……将非硬球流体密度泛函近似推向了一个新的阶段。……构成了建立任意非硬球流体密度泛函近似的很有前景的、重要的一类方法。相关论文在审稿时,得到审稿专家的高度评价:这个方法容易实施,且有极大程度的自我调节的优良特性,因而为自由能计算增添了标准的工具。这是理论方法的创新。
(5) 单独提出的“偶合参数展开热力学摄动框架”,漂亮地解决了 Zwanzig“高温级数展开热力学摄动框架”内部的一个长达半个多世纪以来的理论难题:即“高温级数展开热力学摄动框架”之高于二阶的系数无法可靠地获得(而 Zwanzig 理论对统计物理学以及计算机模拟的影响从其进入世界公认的热力学与统计物理方面的名著、同时也被北京大学等用做本科生教材、参考教材的《现代统计物理教程》与其它统计力学著作、被分子模拟方面的著作重点讲述就可以看出)。又单独提出了“非硬球摄动新概念”,并与申请人所提出的“偶合参数展开热力学摄动框架”结合,相当满意地解决了困扰自 van der Waals 时代以来所有液体理论随着温度的降低而变得越来越不可靠、以至于完全失效的所谓“低温难题”。
(6) 单独并首次在二维、三维空间数值求解了静电体系的CDFT,以同时超越PB 理论与Derjaguin近似的方式获得了小尺寸非平板胶体悬浮在电解质水溶液中的有效静电相互作用势,并获得了一系列关于有效静电相互作用的反常发现;提出了揭示有效静电相互作用(包括所谓的“like charge attraction”)起源的物理图象:氢键型机理,超越了传统与流行的处理“like charge attraction”的Oosawa 模型、Wigner 晶体模型、反离子凝聚模型等;并已将氢键型机理发展完善为普遍情形下(如粒子表面电荷离散性与正负电荷分离、盐离子成链等)有效静电相互作用的完备解释与定性预言纲领。
(7) 单独提出了计算浸润温度的理论方法,可以适用于任意情形浸润温度的计算;比传统的零接触角方法与预浸润外推方法优越之处在于四点:(I)新的方法适用于任意几何形状表面所诱导的浸润相变,而零接触角方法本质上只适合于平表面附近所发生的理想浸润相变。(II)新方法的计算结果没有不确定性;而预浸润外推方法由于微观CDFT计算中无限厚薄膜事实上的不可获得性而不得不使用外推法而不可避免地受到不确定性的困扰。(III)新方法适用于低温、强表面吸附力场等极端情形。而在这些情形中,由于预浸润相变与层状相变混杂在一起难以区分使得预浸润外推方法无法应用。(IV)对于弱吸附力场表面附近的浸润相变,浸润温度很接近于临界温度,预浸润相变区间很小,不可能获得足够预浸润数据供外推使用;因而,预浸润外推方法完全不适用,而新的方法仍然适用。

授课情况:
本科:《大学物理(上、下)》、《医用物理学》、《热力学统计物理》、《电动力学》、《量子场论》;
研究生:《量子统计物理学》、《高等量子力学》、《量子场论》;


湖南省中学生科技创新后备人才培养计划(英才计划)物理学科导师 (2018-now)

扫一扫用手机查看