王接喜

教授 博士生导师 硕士生导师

入职时间:2017-02-28

所在单位:冶金与环境学院

办公地点:中南大学本部冶金馆107

学位:博士学位

毕业院校:中南大学

学科:冶金工程

曾获荣誉:

2023年第六届全国有色金属优秀青年科技奖

2022年湖南省科技创新领军人才

2021年国家优秀青年基金获得者

2020年第十八届全国高校冶金院长奖

2020年湖南省杰出青年基金获得者

2019年芙蓉学者(青年学者)

2019年湖湘青年英才

2017年国家博士后创新人才支持计划

2017年湖南省优秀博士学位论文

2015年宝钢教育基金特等奖

2015年湖南省优秀毕业生

2014年中南大学十大杰出学子

2014年中南大学拔尖创新博士生特等奖

2013年芙蓉学子-榜样力量(学术创新奖)

硕士生袁琳论文“Enhancing Ion Transport at Primary Interparticle Boundaries of Polycrystalline Lithium-Rich Oxide in All-Solid-State Batteries”被Angewandte Chemie International Edition接收发表

发布时间:2025-08-28

点击次数:

Polycrystalline lithium-rich oxide (PLRO) is a promising high-capacity cathode for next-generation all-solid-state batteries (ASSBs). However, its full potential is hindered by sluggish Li+ transport at primary interparticle boundaries, mainly due to the limited flowability of inorganic solid-state electrolytes (SEs). Additionally, infiltrating conventional SEs into PLRO can lead to severe interfacial side reactions because of high melting points. Herein, we report a one-step, low-temperature (<200 °C) co-sintering process that simultaneously synthesizes the SE and infiltrates it into the primary interparticle boundaries of PLRO, creating an integrated composite cathode for ASSBs. This process forms a continuous Li+ transport network, enabling deep bulk activation of PLRO. Meanwhile, the co-sintering process modulates the energy bands of the antibonding transition metal 3d-O 2p and nonbonding O 2p at the surface, achieving greater orbital overlap to suppress oxygen release and mitigate interfacial phase transformation. As a result, the PLRO-based ASSBs exhibit an impressive discharge capacity of 271 mAh g-1 at 0.1C, 212 mAh g-1 at 0.5C, and retain 80.0% capacity after 150 cycles. This study highlights the importance of enhancing ion transport to maximize the performance of PLRO-based ASSBs, offering a practical solution for advancing energy storage technologies.  

上一条: 博士生冯依曼论文“Precisely modulating Li2CO3 coverage on Ni-rich cathode for sulfide solid-state lithium battery with unprecedented performance”被Chem接收发表

下一条: 博士生孙吉平论文“Catalyst and gas diffusion electrode design toward C–N coupling for urea electrosynthesis”被eScience接收发表