Professional Title:Researcher
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Genetics and epigenetics (systems biology) of neuropsychiatric disorders
We have observed extensive interindividual differences in DNA methylation of 8590 CpG sites of 6229 genes in 153 human adult cerebellum samples, enriched in CpG island “shores” and at further distances from CpG islands. To search for genetic factors that regulate this variation, we performed a genome-wide association study (GWAS) mapping of methylation quantitative trait loci (mQTLs) for the 8590 testable CpG sites. cis association refers to correlation of methylation with SNPs within 1 Mb of a CpG site. 736 CpG sites showed phenotype-wide significant cis association with 2878 SNPs (after permutation correction for all tested markers and methylation phenotypes). In trans analysis of methylation, which tests for distant regulation effects, associations of 12 CpG sites and 38 SNPs remained significant after phenotype-wide correction. To examine the functional effects of mQTLs, we analyzed 85 genes that were with genetically regulated methylation we observed and for which we had quality gene expression data. Ten genes showed SNP-methylation-expression three-way associations—the same SNP simultaneously showed significant association with both DNA methylation and gene expression, while DNA methylation was significantly correlated with gene expression. Thus, we demonstrated that DNA methylation is frequently a heritable continuous quantitatively variable trait in human brain. Unlike allele-specific methylation, genetic polymorphisms mark both cis- and trans-regulatory genetic sites at measurable distances from their CpG sites. Some of the genetically regulated DNA methylation is directly connected with genetically regulated gene expression variation.
Gene expression regulation in human brain
Schizophrenia and bipolar disorder are highly heritable psychiatric disorders. Associated genetic and gene expression changes have been identified, but many have not been replicated and have unknown functions. We identified groups of genes whose expressions varied together, i.e. co-expression modules, then tested them for association with schizophrenia. Using Weighted Gene Co-expression Network Analysis, we show that two modules were differentially expressed in patients versus controls. One, up-regulated in cerebral cortex, was enriched with neuron differentiation and neuron development genes, as well as disease GWAS genetic signals; the second, altered in cerebral cortex and cerebellum, was enriched with genes involved in neuron protection functions. The findings were preserved in five expression data sets, including sets from three brain regions, from a different microarray platform, and from bipolar disorder patients. From those observations, we propose neuron differentiation and development pathways may be involved in etiologies of both schizophrenia and bipolar disorder, and neuron protection function participates in pathological process of the diseases.
Informatics development to support research
We provide an introduction to network theory, evidence to support a connection between molecular network structure and neuropsychiatric disease, and examples of how network approaches can expand our knowledge of the molecular bases of these diseases. Without systematic methods to derive their biological meanings and inter-relatedness, the many molecular changes associated with neuropsychiatric disease, including genetic variants, gene expression changes, and protein differences, present an impenetrably complex set of findings. Network approaches can potentially help integrate and reconcile these findings, as well as provide new insights into the molecular architecture of neuropsychiatric diseases. Network approaches to neuropsychiatric disease are still in their infancy, and we discuss what might be done to improve their prospects.
The Last Update Time : ..