陈和柏

特聘教授 博士生导师 硕士生导师

入职时间:2019-07-02

所在单位:数学与统计学院

学历:博士研究生毕业

办公地点:数学与统计学院451办公室

性别:男

学位:博士学位

在职信息:在职

毕业院校:西南交通大学

学科:数学

曾获荣誉:

福建省引进高层次人才,福州大学旗山学者

当前位置: 中文主页 >> 论文成果

Proof of Artes-Llibre-Valls's conjectures for the Higgins-Selkov and the Selkov systems

发布时间:2019-07-11

点击次数:

发表刊物:JOURNAL OF DIFFERENTIAL EQUATIONS

刊物所在地:ACADEMIC PRESS INC ELSEVIER SCIENCE, 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA

关键字:Limit cycle; Higgins-Selkov system; Selkov system; Lienard system

摘要:The aim of this paper is to prove Artes-Llibre-Valls's conjectures on the uniqueness of limit cycles for the Higgins-Selkov system and the Selkov system. In order to apply the limit cycle theory for Lienard systems, we change the Higgins-Selkov and the Selkov systems into Lienard systems first. Then, we present two theorems on the nonexistence of limit cycles of Lienard systems. At last, the conjectures can be proven by these theorems and some techniques applied for Lienard systems.

第一作者:Chen Hebai

论文类型:基础研究

通讯作者:Tang Yilei

论文编号:10.1016/j.jde.2018.12.011

学科门类:数学

文献类型:J

卷号:266

期号:11

页面范围:7638-7657

ISSN号:0022-0396

是否译文:

发表时间:2019-05-19

上一条: Centers of piecewise quasi-homogeneous systems

下一条: How to control the immigration of infectious individuals for a region?