陈和柏

特聘教授 博士生导师 硕士生导师

入职时间:2019-07-02

所在单位:数学与统计学院

学历:博士研究生毕业

办公地点:数学与统计学院451办公室

性别:男

学位:博士学位

在职信息:在职

毕业院校:西南交通大学

学科:数学

曾获荣誉:

福建省引进高层次人才,福州大学旗山学者

当前位置: 中文主页 >> 论文成果

Global dynamics of a Wilson polynomial Lienard equation

发布时间:2020-02-21

点击次数:

发表刊物:Proccedings of the American Mathematical Society

摘要:Gasull and Sabatini in [Ann. Mat. Pura Appl., 2019] studied limit cycles of a Li enard system which has a xed invariant curve, i.e., a Wilson polynomial Li enard system. The Li enard system can be changed into $\dot x=y-(x^2-1)(x^3-bx), ~ \dot y=-x(1+y(x^3-bx))$. For $b\leq0.7 limit cycles of the system are studied completely. But, for 0.7 < b < 0.76, the exact number of limit cycles is still unknown, and Gasull and Sabatini conjectured that the exact number of limit cycles is two(including multiplicities). In this paper, we give a positive answer of this conjecture and study all bifurcatio

第一作者:Chen Haibo

论文类型:期刊论文

通讯作者:Chen Hebai*

学科门类:数学

文献类型:J

卷号:148

期号:11

页面范围:4769-4780

是否译文:

收录刊物:SCI

上一条: Global dynamics of an asymmetry piecewise linear differential system: Theory and applications

下一条: Complete bifurcation diagram and global phase portraits of Lienard differential equations of degree four