Global dynamics of the Josephson equation in TS^1
发布时间:2020-04-06
点击次数:
DOI码:10.1016/j.jde.2020.03.048
发表刊物:Journal of Differential Equations
关键字:Limit cycle; Josephson equation; Homoclinic loop; Two-saddle loop; Saddle connection
摘要:The Josephson equation $\dot \phi=y,~\dot y=-\sin\phi+\epsilon \big(a-(1+\gamma\cos\phi)y\big)$ was researched by Sanders and Cushman in [{\it SIAM J. Math. Anal.} {\bf 17} (1986), 495-511] for its phase portraits when $\epsilon>0$ is small by applying the averaging method. The parameter $\epsilon$ can actually be large or even any real number in the practical application of this model. When $|\epsilon|$ is not small, we cannot apply the averaging method because the system is not near-Hamiltonian. For general $\epsilon \in \mathbb{R}$, we present complete dynamics and more complex bifur
合写作者:唐异垒
第一作者:陈和柏
论文类型:基础研究
学科门类:数学
文献类型:J
卷号:269
期号:6
页面范围:4884-4913
是否译文:否
发表时间:2020-04-06
收录刊物:SCI