陈和柏

特聘教授 博士生导师 硕士生导师

入职时间:2019-07-02

所在单位:数学与统计学院

学历:博士研究生毕业

办公地点:数学与统计学院451办公室

性别:男

学位:博士学位

在职信息:在职

毕业院校:西南交通大学

学科:数学

曾获荣誉:

2024-05-04  当选:  2023-2024年度中南大学十佳青年

2023-08-24  当选:  国家优青

2023-08-01  当选:  湖南省“三尖”创新人才工程荷尖人才

2019-05-05  当选:  福建省高层次人才

当前位置: 中文主页 >> 论文成果

Global dynamics of the Josephson equation in TS^1

发布时间:2020-04-06

点击次数:

DOI码:10.1016/j.jde.2020.03.048

发表刊物:Journal of Differential Equations

关键字:Limit cycle; Josephson equation; Homoclinic loop; Two-saddle loop; Saddle connection

摘要:The Josephson equation $\dot \phi=y,~\dot y=-\sin\phi+\epsilon \big(a-(1+\gamma\cos\phi)y\big)$ was researched by Sanders and Cushman in [{\it SIAM J. Math. Anal.} {\bf 17} (1986), 495-511] for its phase portraits when $\epsilon>0$ is small by applying the averaging method. The parameter $\epsilon$ can actually be large or even any real number in the practical application of this model. When $|\epsilon|$ is not small, we cannot apply the averaging method because the system is not near-Hamiltonian. For general $\epsilon \in \mathbb{R}$, we present complete dynamics and more complex bifur

合写作者:唐异垒

第一作者:陈和柏

论文类型:基础研究

学科门类:数学

文献类型:J

卷号:269

期号:6

页面范围:4884-4913

是否译文:

发表时间:2020-04-06

收录刊物:SCI

发布期刊链接:https://doi.org/10.1016/j.jde.2020.03.048

上一条: Dynamical analysis of a Lotka-Volterra learning-process model

下一条: Centers of piecewise quasi-homogeneous systems