陈和柏

特聘教授 博士生导师 硕士生导师

入职时间:2019-07-02

所在单位:数学与统计学院

学历:博士研究生毕业

办公地点:数学与统计学院451办公室

性别:男

学位:博士学位

在职信息:在职

毕业院校:西南交通大学

学科:数学

曾获荣誉:

福建省引进高层次人才,福州大学旗山学者

当前位置: 中文主页 >> 论文成果

Generalized Hopf bifurcation of a non-smooth railway wheelset system

发布时间:2020-07-02

点击次数:

DOI码:10.1007/s11071-020-05702-7

发表刊物:Nonlinear Dynamics

关键字:Wheelset; Center manifold theorem; Generalized Hopf bifurcation; Poincare map; ́Non- smooth system

摘要:In this paper, we investigate the general- ized Hopf bifurcation of a non-smooth railway wheelset system. It is to note that the system is a four-dimensional non-smooth differential equation. First, we show how to overcome the non-smoothness and reduce the four-dimensional system to a two- dimensional non-smooth system by the center mani- fold theorem. Since the two-dimensional central manifold is still non-smooth, we cannot apply the classical Hopf bifurcation theorem. Hence, we need to construct and analyze a Poincare ́ map so that a criterion for determining the generalized Hopf bifur- cation occurring in the system is given. Finally, to demonstrate our theoretical results, we also give some numerical simulations which are presented to exhibit the corresponding bifurcation diagrams.

合写作者:李登辉, 乐源, 谢建华

第一作者:缪鹏程

论文类型:期刊论文

通讯作者:陈和柏

学科门类:力学

文献类型:J

卷号:100

页面范围:3277-3293

是否译文:

发表时间:2020-07-01

发布期刊链接:https://doi.org/10.1007/s11071-020-05702-7

上一条: Crossing periodic orbits of nonsmooth Lienard systems and applications

下一条: Bifurcation diagram and global phase portraits of a family of quadratic vector fields in class I