An element-free Galerkin method for ground penetrating radar numerical simulation
Hits:
Release time:2019-11-22
Affiliation of Author(s):School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
Teaching and Research Group:Applied Geophysics
Journal:Journal of Central South University of Technology
Place of Publication:the People's Republic of China
Funded by:41074085,NCET-12-0551
Key Words:element-free Galerkin method; moving least-squares method; ground penetrating radar; forward simulat
Abstract:An element-free Galerkin method (EFGM) is used to solve the two-dimensional (2D) ground penetrating radar (GPR) modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different from element-based numerical methods, this approach makes nodes free from the elemental restraint and avoids the explicit mesh discretization. First, we derived the boundary value problem for the 2D GPR simulation problems. Second, a penalty function approach and a boundary condition truncated method were used to enforce the essential and the absorbing boundary conditions, ...
Co-author:郭荣文, 王洪华
First Author:冯德山
Indexed by:Applied Research
Document Code:DOI:10.1007/s11771-015-2517-7
Discipline:地质资源与地质工程
Document Type:J
Volume:22
Issue:1
Page Number:261-269
ISSN No.:1005-9784
Translation or Not:no
Date of Publication:2015-01-01
Included Journals:SCI、EI
-
|
Zip Code:c576f0c85848a14d10428d1b79269fc7d68bde9ba6ecb95648b168a03671c3821c778c2bedf0cae5d03c95a065c3a5efa4243241acb9eb6089885db6f9f3fa7f5b7491eb5af48e7ab43d253e29e0fa6991b0af260ac98903cc7fbca150cb2fc86cb6bd41d95f78a263ba3d6f6aa504ee56cdd8693f2e6f13b576940cee3633de
Fax:17e6c064ee5cb174c4e944a660b3f619e9f93b408e0b240bede9c3e19ecc6800e4984f519ecfa91ba7ae06ae3e4625e03227d05cc2002730892a846aa57724d5726b7e7fb08181480e647262115fb634c6f5545aacd74cff5c45368c07d0490d7716bdcb5446496de61a5a7d10de5694997f1bfa8ba6d200f4ccaeebd9c2fed0
Postal Address:71db3ba9b84fb74a51e15316e4d4d5158f917d9d8fb5faf012f84ab1172b26e0f5c378c5cecdf29537ce2e6e402924d646da474ef15c20b32a3bd5b6bc9c7bd827f454623be9d12b5256f6321a92104010a6def1c290e33f0d28cb4f37613a9225795c4442d6b34af06bd692cac4ab416f451ae02c3f9b5ffa4b7b654b4a5c82
Office Phone:17e6c064ee5cb174c4e944a660b3f619e9f93b408e0b240bede9c3e19ecc6800e4984f519ecfa91ba7ae06ae3e4625e03227d05cc2002730892a846aa57724d5726b7e7fb08181480e647262115fb634c6f5545aacd74cff5c45368c07d0490d7716bdcb5446496de61a5a7d10de5694997f1bfa8ba6d200f4ccaeebd9c2fed0
Mobile:5137d55315e3e35e4f835eb43d34a4aa36b1b453d3da1bb8194ee0525d17fd8ebb55be93064fddd451e8daaed692f6a07972105dcad24687d241e73e52fc23bfeaa9ae244a27b9bbbf3bc7746d1ebf576a528b5fd3ab2e715ccd88d1cee492655bae47acb16b70d23c481ee1f499873c9165a8278a451959797a05929c450c7c
Email:b679856bb3c424c1b1f7ff32fc78c0465f82c20323019d2bcbaf0fd567213eff4f807ae6c53d852fff6b4557cf7dcfb6d93900b2fbb86f99bad419376cc49941a87bc49d00f086bfbf95d3a9f2040f260a5dea2e34b25479a54e2d46c07826eed4d04d17b119265ef06d58cb47f1322d0f7ab5847b2d282fa530dd5e5d029335
|