鲁鸣鸣

副教授 博士生导师 硕士生导师

入职时间:2009-04-01

所在单位:计算机学院

学历:博士研究生毕业

性别:男

联系方式:电子邮件:mingminglu@csu.edu.cn

学位:博士学位

在职信息:在职

毕业院校:美国佛罗里达大西洋大学

学科:计算机科学与技术

曾获荣誉:

2019-12-25  当选:  湖南省教学成果奖一等奖

当前位置: 中文主页 >> 论文成果

The learning of the precipitates morphological parameters from the composition of Nickel-based superalloys

发布时间:2021-04-16

点击次数:

影响因子:6.289

发表刊物:材料设计(Materials Design)

关键字:Machine learning, precipitated-phase characteristics, Ni-based Superalloy

摘要:It becomes a common practice to adopt high-throughput experiments on superalloys, which can generate a large amount of data. To address this large amount of data, we designed a machine learning (ML) based model to automate the experimental analysis process. More specifically, we adopted the Unet algorithm to segment the precipitated phases from superalloy images and subsequently used a regression algorithm to predict the morphological parameters of the microstructure of the segmented precipitated phases according to their composition. The method proposed in this work may provide guidance for the future design of the superalloy composition.

合写作者:刘锦, Zi Wang, 鲁鸣鸣

第一作者:王运强

论文类型:期刊论文

通讯作者:王建新

是否译文:

发表时间:2021-04-15

收录刊物:SCI

上一条: Scale-Adaptive Adversarial Patch Attack for Remote Sensing Image Aircraft Detection

下一条: Mmhge: detecting mild cognitive impairment based on multi-atlas multi-view hybrid graph convolutional networks and ensemble learning