Journal Publications
- [1]X Zhou, J Tian, Nonlinear bilevel programming approach for decentralized supply chain using a hybrid state transition algorithm.Knowledge-Based Systems, 2022, 240
- [2]Zeyu Wang, Xiaojun Zhou, Jituo Tian.Hierarchical parameter optimization based support vector regression for power load forecasting.Sustainable Cities and Society, 2021
- [3]Xiaojun Zhou, Chaojie Li, Yuan Gao, Zhaoke Huang.A multiple gradient descent design for multi-task learning on edge computing: multi-objective machine learning approach.IEEE Transactions on Network Science and Engineering, 2021
- [4]周晓君, 阳春华, 桂卫华.状态转移算法原理与应用[J].自动化学报, 2020, 46 (11) : 2260-2274.
- [5]Jie Han, Xiaojun Zhou, Peng Shi, Cheng-Chew Lim, Chunhua Yang.Stackelberg-Nash game approach for constrained robust optimization with fuzzy variables[J].IEEE Transactions on Fuzzy Systems, 2020
- [6]A hybrid feature selection method for production condition recognition in froth flotation with noisy labels[J].Minerals Engineering, 2020, 153 (106201)
- [7]Hybrid intelligence assisted sample average approximation method for chance constrained dynamic optimization[J].IEEE Transactions on Industrial Informatics, 2020
- [8]A fast optimization method with the speed of light, 2020
- [9]X.J. Zhou, M Huang, T.W. Huang, C.H. Yang, W.H. Gui.Dynamic optimization for copper removal process with continuous production constraints[J].IEEE Transactions on Industrial Informatics, 2019
- [10]W.H. Gui, X.J. Zhou, C.H. Yang, F.X. Zhang.Optimal setting and control strategy for industrial process based on discrete-time fractional-order PID[J].IEEE Access, 2019, 7: 47747--47761.
- [11]S.X. Yang, X.J. Zhou, C.H. Yang, Z.K. Huang.Energy consumption forecasting for the nonferrous metallurgy industry using hybrid support vector regression with an adaptive state transition algorithm[J].Cognitive Computation, 2019
- [12]T. W. Huang, C.H. Yang, Y.F. Xie, K. Yang, X.J. Zhou.A novel modularity-based discrete state transition algorithm for community detection in networks[J].Neurocomputing, 2019, 334: 89-99.
- [13]G.B. Jia, C.C. Xu, J.P. Long, X.J. Zhou.An external archive-based constrained state transition algorithm for optimal power dispatch[J].Complexity, 2019, 4727168: 1-11.
- [14]T.W. Huang, X.J. Zhou, C.H. Yang, Z.K. Huang.A hybrid feature selection method based on binary state transition algorithm and ReliefF[J].IEEE Journal of Biomedical and Health Informatics, 2019, 23 (5) : 1888--1898.
- [15]W.H. Gui, C.H. Yang, X.J. Zhou.A statistical study on parameter selection of operators in continuous state transition algorithm[J].IEEE Transactions on Cybernetics, 2018, 49 (10) : 3722--3730.
- [16]W.H. Gui, C.H. Yang, J.J. Zhou, X.J. Zhou.Set-point tracking and multi-objective optimization-Based PID control for the goethite process[J].IEEE ACCESS, 2018, 6: 36683-36698.
- [17]W.H. Gui, R.D. Zhang, X.J. Zhou, J. Han, C.H. Yang.Discussion on uncertain optimization methods for nonferrous metallurgical processes[J].控制与决策, 2018, 33 (5) : 856--865.
- [18]W.H. Gui, X.J. Zhou, C.H. Yang, Z.K. Huang.A novel cognitively-inspired state transition algorithm for solving the linear bi-level programming problem[J].Cognitive Computation, 2018, 10 (5) : 816–826.
- [19]H.Q. Zhu, X.J. Zhou, C.H. Yang, F.X. Zhang.Fractional order fuzzy PID optimal control in copper removal process of zinc hydrometallurgy[J].Hydrometallurgy, 2018, 178: 60-76.
- [20]W.H. Gui, C.H. Yang, T.W. Huang, X.J. Zhou*, M. Huang.Dynamic optimization based on state transition algorithm for copper removal process[J].Neural Computing and Applications, 2019, 31 (7) : 2827–2839.
|
-
Michael X Zhou
Zip Code:c576f0c85848a14d10428d1b79269fc7d68bde9ba6ecb95648b168a03671c3821c778c2bedf0cae5d03c95a065c3a5efa4243241acb9eb6089885db6f9f3fa7f5b7491eb5af48e7ab43d253e29e0fa6991b0af260ac98903cc7fbca150cb2fc86cb6bd41d95f78a263ba3d6f6aa504ee56cdd8693f2e6f13b576940cee3633de
Postal Address:724dca3c97e4f046c2b990818f85480a79bcdac2edbd0034899adfca35dc0e3994c1cc3b666e004d097d3034b50f8f603eb0ff6eec466b9413b3342ccc04c7d69485912747149f94ab0d3912b2c2ca0ae0e9a5db083f62e63e11801210c48a9eb376d8f088600c0837a0457768428a012d9a8038ce87d4a91a99029cbac902b5
Mobile:0973fb1dc15de86a8eafa4c2268653770923bbad32de173a6e7024e0b9e27464edbb93e076bc73a01e33de1b511d53fba26ad4b1c0d107370f89020dc9bd7b4ba79b7dbec8e69d613c2aec0930a37de84c15d72252064cc05ee0efe29c9d972fe5de5c27b9bd00dc951f42d1a9d30ed5a3832302904c242306e27c7f0b76cf0c
Email:8d5ab1d37baca8f03050a48672637a219935bbd153a4bb7617b8f3c33034cbf61f1f6b16e7548ca73277a72992d4f60937bacb10fb0e3fa661f3dc77ee9338baf01e6c56397fb8deec5d119b75088dca84225d06ab868c652e52b4cd4d92f2b6c3f62991119a5e4ec8015641332fcae9c2c2b0466bc04a5f9a0fcdbbd8c25d6f
|