周伟

个人信息Personal Information

教授

博士生导师

硕士生导师

教师英文名称:David Zhou

教师拼音名称:zhouwei

出生日期:1982-09-08

入职时间:2013-01-14

所在单位:极端流动力能前沿科学中心

职务:实验室副主任

学历:博士研究生毕业

办公地点:中南大学铁道校区高速列车研究中心203办公室

性别:男

联系方式:联系电话:0731-82655294 Email: gszx_zhouwei@csu.edu.cn 或 zhou_wei000@126.com 或 124575608@qq.com

学位:工学博士学位

在职信息:在职

主要任职:博士生导师,学硕/ 专硕导师

其他任职:世界交通运输大会(WTC)轨道交通学部轨道交通装备系统科学“机车车辆”技术委员会 联合主席

毕业院校:中南大学

学科:交通运输工程

论文成果

当前位置: 中文主页 >> 论文成果

Dynamic stiffness method for exact longitudinal free vibration of rods and trusses using simple and advanced theories

点击次数:

发表刊物:Applied Mathematical Modelling

关键字:Dynamic stiffness method, Wittrick-Williams algorithm, Rayleigh-Bishop theory, Mindlin–Hermann theory, Broadband dynamics, Modal analysis

摘要:Closed-form dynamic stiffness (DS) formulations coupled with an efficient eigen-solution technique are proposed for exact longitudinal free vibration analyses of rods and trusses by using classical, Rayleigh-Love, Rayleigh-Bishop and Mindlin–Hermann theories. First, the exact general solutions of the governing differential equations of the four rod theories are developed. Then the solutions are substituted into the generalized displacement and force boundary conditions (BCs), leading to the elemental DS matrices utilising symbolic compu- tation. As an accurate and efficient modal solution technique, the Wittrick-Williams (WW) algorithm is applied. The J 0 count for the WW algorithm has been resolved for all four types of DS elements with explicit analytical expressions. The method is verified against some existing exact results for rods subjected to specific BCs. Comparisons of the natural frequencies and mode shapes for different theories and slenderness ratios are also made. Finally, benchmark solutions are provided for individual rods subject to different BCs, a stepped rod and a truss. This research provides an exact and highly efficient modal analy- sis tool for rods and trusses within the whole frequency range, which is suitable for para- metric studies, optimization design, inverse problem analysis, and important for statistical energy analysis.

论文类型:期刊论文

页面范围:1-20

是否译文:

发表时间:2022-01-01

发布期刊链接:www.elsevier.com/locate/apm