陈和柏

特聘教授 博士生导师 硕士生导师

入职时间:2019-07-02

所在单位:数学与统计学院

学历:博士研究生毕业

办公地点:数学与统计学院451办公室

性别:男

学位:博士学位

在职信息:在职

毕业院校:西南交通大学

学科:数学

曾获荣誉:

福建省引进高层次人才,福州大学旗山学者

当前位置: 中文主页 >> 论文成果

Global bifurcation studies of a cubic Liénard system

发布时间:2020-12-01

点击次数:

DOI码:10.1016/j.jmaa.2020.124810

发表刊物:Journal of Mathematical Analysis and Applications

摘要:In recent decades much attention has been paid to polynomial Liénard systems. Cubic ones are such systems with a cubic restoring and quadratic damping; for example, the famous FitzHugh-Nagumo system can be transformed into a cubic Liénard system. For the three-parameter family of cubic Liénard systems, the case with a positive restoring leading coefficient was solved. In this paper we will investigate the case when the leading coefficient of the restoring is negative, we will show that saddle-node bifurcations, pitchfork bifurcations, Hopf bifurcations, homoclinic bifurcations, and heteroclinic bifurcations will occur through a global analysis and present a global bifurcation diagram with global phase portraits depicted in Poincaré disks. Finally, some main results are demonstrated by numerical simulations.

合写作者:Zhu Huaiping*

第一作者:Chen Hebai

论文类型:期刊论文

学科门类:数学

文献类型:J

是否译文:

发表时间:2020-11-30

收录刊物:SCI

上一条: The saddle case of a nonsmooth Rayleigh–Duffing oscillator

下一条: Crossing periodic orbits of nonsmooth Lienard systems and applications