陈和柏

特聘教授 博士生导师 硕士生导师

入职时间:2019-07-02

所在单位:数学与统计学院

学历:博士研究生毕业

办公地点:数学与统计学院451办公室

性别:男

学位:博士学位

在职信息:在职

毕业院校:西南交通大学

学科:数学

曾获荣誉:

2024-05-04  当选:  2023-2024年度中南大学十佳青年

2023-08-24  当选:  国家优青

2023-08-01  当选:  湖南省“三尖”创新人才工程荷尖人才

2019-05-05  当选:  福建省高层次人才

当前位置: 中文主页 >> 论文成果

The saddle case of a nonsmooth Rayleigh–Duffing oscillator

发布时间:2020-12-16

点击次数:

DOI码:10.1016/j.ijnonlinmec.2020.103657

发表刊物:International Journal of Non-Linear Mechanics

摘要:We consider a single degree freedom oscillator in order to accurately represent some modeling with ship roll damping. The proposed oscillator is a nonsmooth Rayleigh–Duffing equation 𝑥̈ + 𝑎𝑥̇ + 𝑏𝑥̇ |𝑥̇ | + 𝑐𝑥 + 𝑑𝑥3 = 0. The main goal of this paper is to study the global dynamics of the nonsmooth Rayleigh–Duffing oscillator in the case 𝑑 < 0, i.e., the saddle case. The nonsmooth Rayleigh–Duffing oscillator is only 𝐶1 so that many classical theory cannot be applied directly. In order to see the tendency of evolutions in a large range, we study not only its finite equilibria but also the equilibria at infinity. We find necessary and sufficient conditions for existence of limit cycles and heteroclinic loops respectively. Finally, we give the complete global bifurcation diagram and classify all global phase portraits in the Poincaré disc in global parameters.

第一作者:Wang Zhaoxia

论文类型:期刊论文

通讯作者:Chen Hebai*

论文编号:103657

学科门类:工学

一级学科:力学

文献类型:J

卷号:129

是否译文:

发表时间:2020-12-01

收录刊物:SCI

下一条: Global bifurcation studies of a cubic Liénard system