周晓君

教授 博士生导师 硕士生导师

入职时间:2014-12-23

所在单位:自动化学院

学历:博士研究生毕业

办公地点:中南大学校本部民主楼316

性别:男

联系方式:+86-13787052648

学位:博士学位

在职信息:在职

毕业院校:澳大利亚联邦大学

学科:控制科学与工程

机器学习

发布时间:2022-01-17

点击次数:

传统机器学习

[1] Rumelhart D E, Hinton G E, Williams R J. Learning internal representations by error propagation[J]. Nature, 1986, 323: 533-536. 

[2] Cortes C, Vapnik V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273-297.

[3] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.

[4] Breiman L. Random forests[J]. Machine learning, 2001, 45(1): 5-32.

[5] Rasmussen C E. Gaussian processes in machine learning[C]//Summer school on machine learning. Springer, Berlin, Heidelberg, 2003: 63-71.

[6] Smola A J, Schölkopf B. A tutorial on support vector regression[J]. Statistics and computing, 2004, 14(3): 199-222.

[7] Shlens J. A tutorial on principal component analysis[J]. arXiv preprint arXiv:1404.1100, 2014.

[8] Van der Maaten L, Hinton G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(11):2579-2605.



深度学习






强化学习




经典中文文献


卷积神经网络

[1] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251.  卷积神经网络研究综述_周飞燕.pdf

[2] 常亮, 邓小明, 周明全, 等. 图像理解中的卷积神经网络[J]. 自动化学报, 2016, 42(9): 1300-1312. 图像理解中的卷积神经网络_常亮.pdf


特征选择

[1] Chandrashekar G, Sahin F. A survey on feature selection methods[J]. Computers & Electrical Engineering, 2014, 40(1): 16-28.  A survey on feature selection methods_2014.pdf

[2] 李郅琴, 杜建强, 聂斌, 等. 特征选择方法综述[J]. 计算机工程与应用, 2019, 55(24): 10-19. 特征选择方法综述_2019.pdf

[3] 姚旭, 王晓丹, 张玉玺, 等. 特征选择方法综述[J]. 控制与决策, 2012, 27(002): 161-166.  特征选择方法综述_2012.pdf

[4] Vergara J R, Estévez P A. A review of feature selection methods based on mutual information[J]. Neural computing and applications, 2014, 24(1): 175-186.  A review of feature selection methods based on mutual information_2014.pdf

[5] Miao J, Niu L. A survey on feature selection[J]. Procedia Computer Science, 2016, 91: 919-926. A Survey on Feature Selection_2016.pdf

[6] Xue B, Zhang M, Browne W N, et al. A survey on evolutionary computation approaches to feature selection[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(4): 606-626.  A Survey on Feature Selection_2016.pdf

[7] Li J, Cheng K, Wang S, et al. Feature selection: A data perspective[J]. ACM computing surveys (CSUR), 2017, 50(6): 1-45. 

Feature Selection A Data Perspective_2017.pdf

[8] Xue B, Zhang M, Browne W N. Particle swarm optimization for feature selection in classification: A multi-objective approach[J]. IEEE Transactions on Cybernetics, 2013, 43(6): 1656-1671.  Particle Swarm Optimization for Feature Selection in_2013.pdf

[9] Zhang Y, Gong D, Gao X, et al. Binary differential evolution with self-learning for multi-objective feature selection[J]. Information Sciences, 2020, 507: 67-85.  Binary differential evolution with self-learning for_2020.pdf



上一条: 最优化理论与算法

下一条: 决策理论与方法