周晓君

1884

教授 博士生导师 硕士生导师

入职时间:2014-12-23

所在单位:自动化学院

学历:博士研究生毕业

办公地点:中南大学校本部民主楼316

性别:男

联系方式:+86-13787052648

学位:博士学位

在职信息:在职

毕业院校:澳大利亚联邦大学

学科:控制科学与工程
人工智能

最优化理论与算法

发布时间:2022-01-16

点击次数:

跟最优化相关的学术期刊:


INFORMS出版社:

Operations Research, https://pubsonline.informs.org/journal/opre

Management Science,  https://pubsonline.informs.org/journal/mnsc

INFORMS Journal on Computing, https://pubsonline.informs.org/journal/ijoc


Springer出版社

Mathematical Programming,https://www.springer.com/journal/10107

Mathematical Programming Computation, https://www.springer.com/journal/12532

Annals of Operations Research, https://www.springer.com/journal/10479

Journal of Optimization Theory and Applications, https://www.springer.com/journal/10957

Journal of Global Optimization,https://www.springer.com/journal/10898

Journal of Combinatorial Optimization, https://www.springer.com/journal/10878

Computational Optimization and Applications, https://www.springer.com/journal/10589

Optimization and Engineering, https://www.springer.com/journal/11081

Fuzzy Optimization and Decision Making, https://www.springer.com/journal/10700

Artificial Intelligence Review,https://www.springer.com/journal/10462

Journal of Heuristics, https://www.springer.com/journal/10732

The Journal of Supercomputing,https://www.springer.com/journal/11227

Neural Computing and Applications,https://www.springer.com/journal/521

Cognitive Computation, https://www.springer.com/journal/12559

Soft Computing, https://www.springer.com/journal/500

Applied Intelligence,https://www.springer.com/journal/10489

Complex & Intelligent Systems,https://www.springer.com/journal/40747

International Journal of Machine Learning and Cybernetics,https://www.springer.com/journal/13042

Engineering with Computers,https://www.springer.com/journal/366

Computing,https://www.springer.com/journal/607


Elsevier出版社:

European Journal of Operational Research,https://www.journals.elsevier.com/european-journal-of-operational-research

Omega, https://www.journals.elsevier.com/omega

Applied Mathematics and Computation,https://www.journals.elsevier.com/applied-mathematics-and-computation

Applied Mathematical Modelling, https://www.journals.elsevier.com/applied-mathematical-modelling

Information Sciences,https://www.sciencedirect.com/journal/information-sciences

Applied Soft Computing, https://www.sciencedirect.com/journal/applied-soft-computing

Neurocomputing, https://www.journals.elsevier.com/neurocomputing

Computers & Operations Research,https://www.journals.elsevier.com/computers-and-operations-research

Journal of Computational and Applied Mathematics, https://www.sciencedirect.com/journal/journal-of-computational-and-applied-mathematics

Knowledge-Based Systems, https://www.journals.elsevier.com/knowledge-based-systems

Decision Support Systems, https://www.journals.elsevier.com/decision-support-systems

Engineering Applications of Artificial Intelligence, https://www.sciencedirect.com/journal/engineering-applications-of-artificial-intelligence

Swarm and Evolutionary Computation, https://www.sciencedirect.com/journal/swarm-and-evolutionary-computation

Expert Systems with Applications, https://www.sciencedirect.com/journal/expert-systems-with-applications

Mathematics and Computers in Simulation, https://www.sciencedirect.com/journal/mathematics-and-computers-in-simulation

Advances in Engineering Software, https://www.sciencedirect.com/journal/advances-in-engineering-software

Theoretical Computer Science, https://www.sciencedirect.com/journal/theoretical-computer-science

SoftwareX, https://www.sciencedirect.com/journal/softwarex


IEEE出版社

IEEE Transactions on Automatic Control, https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9

IEEE Transactions on Evolutionary Computation, https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4235
IEEE Transactions on Cybernetics, https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221036

IEEE Transactions on Systems, Man, and Cybernetics: Systems, https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6221021

Evolutionary Computation, https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6720222

IEEE Access, https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639


SIAM出版社

SIAM Journal on Optimization, https://www.siam.org/publications/journals/siam-journal-on-optimization-siopt

SIAM Journal on Scientific Computing, https://www.siam.org/publications/journals/siam-journal-on-scientific-computing-sisc

SIAM Review, https://www.siam.org/publications/journals/siam-review-sirev


Taylor and Francis 出版社:

International Journal of Production Research, https://www.tandfonline.com/journals/tprs20

Engineering Optimization, https://www.tandfonline.com/journals/geno20

Optimization Methods and Software,https://www.tandfonline.com/journals/goms20





1 最优化理论


[1] Rockafellar R T. Convex analysis[M]. Princeton University Press, 1970.

[2] Boyd S, Boyd S P, Vandenberghe L. Convex optimization[M]. Cambridge University Press, 2004

[3] Bazaraa M S, Sherali H D, Shetty C M. Nonlinear programming: theory and algorithms[M]. John Wiley & Sons, 2006.

[4] Nocedal J, Wright S. Numerical optimization[M]. Springer Science & Business Media, 2006. 

[5] Floudas C A. Nonlinear and mixed-integer optimization: fundamentals and applications[M]. Oxford University Press, 1995.

[6] Tawarmalani M, Sahinidis N V. Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications[M]. Springer Science & Business Media, 2002.

[7] Miettinen K. Nonlinear multiobjective optimization[M]. Springer Science & Business Media, 1999.

[8] Shapiro A, Dentcheva D, Ruszczynski A. Lectures on stochastic programming: modeling and theory[M]. Society for Industrial and Applied Mathematics, 2009.

[9] Ben-Tal A, El Ghaoui L, Nemirovski A. Robust optimization[M]. Princeton University Press, 2009. 

[10] 袁亚湘. 非线性优化计算方法[M]. 科学出版社,2008.


2 最优化算法

2.1 确定性优化算法

    无约束优化

    [1]  Liu D C, Nocedal J. On the limited memory BFGS method for large scale optimization[J]. Mathematical programming, 1989, 45(1): 503-528.

    [2] Dai Y H, Yuan Y. A nonlinear conjugate gradient method with a strong global convergence property[J]. SIAM Journal on optimization, 1999, 10(1): 177-182.

    [3] Kolda T G, Lewis R M, Torczon V. Optimization by direct search: New perspectives on some classical and modern methods[J]. SIAM review, 2003, 45(3): 385-482. 

    [4]  Torczon V. On the convergence of pattern search algorithms[J]. SIAM Journal on optimization, 1997, 7(1): 1-25.

    [5] Bottou L, Curtis F E, Nocedal J. Optimization methods for large-scale machine learning[J]. SIAM Review, 2018, 60(2): 223-311.

    [6] Wright S J. Coordinate descent algorithms[J]. Mathematical Programming, 2015, 151(1): 3-34.

    [7] Nesterov Y. Efficiency of coordinate descent methods on huge-scale optimization problems[J]. SIAM Journal on Optimization, 2012, 22(2): 341-362.


   约束优化

    [2] Audet C, Dennis Jr J E. Mesh adaptive direct search algorithms for constrained optimization[J]. SIAM Journal on optimization, 2006, 17(1): 188-217.

    [1]  Birgin E G, Martínez J M, Raydan M. Nonmonotone spectral projected gradient methods on convex sets[J]. SIAM Journal on Optimization, 2000, 10(4): 1196-1211.

    [3] Vandenberghe L, Boyd S. Semidefinite programming[J]. SIAM review, 1996, 38(1): 49-95.

    [4] Byrd R H, Lu P, Nocedal J, et al. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing, 1995, 16(5): 1190-1208.

   [5] Byrd R H, Hribar M E, Nocedal J. An interior point algorithm for large-scale nonlinear programming[J]. SIAM Journal on Optimization, 1999, 9(4): 877-900.

   [6] Duran M A, Grossmann I E. An outer-approximation algorithm for a class of mixed-integer nonlinear programs[J]. Mathematical programming, 1986, 36(3): 307-339.

   [7] Ben-Tal A, Nemirovski A. Robust convex optimization[J]. Mathematics of Operations Research, 1998, 23(4): 769-805.

   [8] Bertsimas D, Brown D B, Caramanis C. Theory and applications of robust optimization[J]. SIAM Review, 2011, 53(3): 464-501.

   [9] Androulakis I P, Maranas C D, Floudas C A. αBB: A global optimization method for general constrained nonconvex problems[J]. Journal of Global Optimization, 1995, 7(4): 337-363.

  [10] Wächter A, Biegler L T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming[J]. Mathematical programming, 2006, 106(1): 25-57.

[11] Luo Z Q, Ma W K, So A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20-34.

   多目标优化

[1]   Das I, Dennis J E. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems[J]. SIAM journal on optimization, 1998, 8(3): 631-657.



2.2 随机性优化算法

    无约束优化

   [1-1] X Zhou, C Yang, W Gui.  State transition algorithm[J],  Journal of Industrial and Management Optimization, 2012, 8 (4): 1039-1056.  STA_2012.pdf

   [1-2] Zhou X, Gao D Y, Yang C, et al. Discrete state transition algorithm for unconstrained integer optimization problems[J]. Neurocomputing, 2016, 173: 864-874. DSTA_2016.pdf

   [1-3]  Zhou X, Yang C, Gui W. A statistical study on parameter selection of operators in continuous state transition algorithm[J]. IEEE Transactions on Cybernetics, 2019, 49(10): 3722-3730. POSTA_2019.pdf

   [2] Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680. SA_1983.pdf

   [3] Whitley D. A genetic algorithm tutorial[J]. Statistics and Computing, 1994, 4(2): 65-85.  GA_1994.pdf

   [4-1] Dorigo M, Gambardella L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.  ACS_1997.pdf

   [4-2] Dorigo M, Birattari M, Stutzle T. Ant colony optimization[J]. IEEE Computational Intelligence Magazine, 2006, 1(4): 28-39.  icon_txt.gifACO_2006.pdf

   [5-1] Storn R, Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.  DE_1997.pdf

   [5-2] Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE transactions on Evolutionary Computation, 2009, 13(2): 398-417.  SaDE_2009.pdf

   [5-3] Wang Y, Cai Z, Zhang Q. Differential evolution with composite trial vector generation strategies and control parameters[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 55-66.  CoDE_2011.pdf

   [6] Hansen N, Müller S D, Koumoutsakos P. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)[J]. Evolutionary Computation, 2003, 11(1): 1-18.  CMA-ES_2003.pdf

   [7] Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295.  CLPSO_2006.pdf

   [8] Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm[J]. Journal of global optimization, 2007, 39(3): 459-471.  ABC_2007.pdf

   [9] Yang X S, Deb S. Engineering optimisation by cuckoo search[J]. International Journal of Mathematical Modelling and Numerical Optimisation, 2010, 1(4): 330-343.  CS_2010.pdf

   [10] Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.  GWO_2014.pdf

 

    约束优化

   [1]  Runarsson T P, Yao X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 284-294. Stochastic Ranking for Constrained Evolutionary Optimization.pdf

   [2]  Coello C A C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11-12): 1245-1287. Theoretical and numerical constraint-handling.pdf

   [3]  Coello C A C, Montes E M. Constraint-handling in genetic algorithms through the use of dominance-based tournament selection[J]. Advanced Engineering Informatics, 2002, 16(3): 193-203. Constraint-handling in genetic algorithms through the use of.pdf

   [4]   Venkatraman S, Yen G G. A generic framework for constrained optimization using genetic algorithms[J]. IEEE Transactions on Evolutionary Computation, 2005, 9(4): 424-435. A generic framework for constrained optimization using genetic algorithms.pdf

   [5]   Cai Z, Wang Y. A multiobjective optimization-based evolutionary algorithm for constrained optimization[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 658-675.  A multiobjective optimization-based evolutionary algorithm for constrained optimization.pdf

   [6]   Takahama T, Sakai S. Constrained optimization by applying the alpha constrained method to the nonlinear simplex method with mutations[J]. IEEE Transactions on Evolutionary Computation, 2005, 9(5): 437-451.  Constrained optimization by applying the alpha constrained method to the nonlinear simplex method with mutations.pdf

   [7]   Zhang M, Luo W, Wang X. Differential evolution with dynamic stochastic selection for constrained optimization[J]. Information Sciences, 2008, 178(15): 3043-3074. Differential evolution with dynamic stochastic selection for constrained optimization.pdf

   [8]   Wang Y, Cai Z, Zhou Y, et al. An adaptive tradeoff model for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 80-92.  An adaptive tradeoff model for constrained evolutionary optimization.pdf

   [9]   Mallipeddi R, Suganthan P N. Ensemble of constraint handling techniques[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(4): 561-579.  Ensemble of Constraint Handling Techniques.pdf

   [10]  Mezura-Montes E, Coello C A C. Constraint-handling in nature-inspired numerical optimization: past, present and future[J]. Swarm and Evolutionary Computation, 2011, 1(4): 173-194. Constraint-handling in nature-inspired numerical optimization past, present and future.pdf


    多目标优化

   [1]  Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm[J]. TIK-report, 2001, 103.  SPEA2-2001.pdf

   [2]  Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.  NSGA-II-2002.pdf

   [3]  Deb K, Mohan M, Mishra S. Evaluating the ϵ-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions[J]. Evolutionary Computation, 2005, 13(4): 501-525.  epsilon dominace -2005.pdf

   [4] Zhang Q, Li H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.  MOEA-D-2007.pdf

   [5] Bader J, Zitzler E. HypE: An algorithm for fast hypervolume-based many-objective optimization[J]. Evolutionary Computation, 2011, 19(1): 45-76.  HypE-2011.pdf

   [6] Yang S, Li M, Liu X, et al. A grid-based evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(5): 721-736.  GrEA-2013.pdf

   [7] Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. NSGA-III-2014.pdf

   [8] Zhang X, Tian Y, Jin Y. A knee point-driven evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(6): 761-776.  KnEA-2015.pdf

   [9] Li K, Deb K, Zhang Q, et al. An evolutionary many-objective optimization algorithm based on dominance and decomposition[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(5): 694-716.  MOEA-DD-2015.pdf

  [10] Cheng R, Jin Y, Olhofer M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791.  RVEA-2016.pdf


下一条: 机器学习